formatage des données

This commit is contained in:
Colas Geier 2024-02-26 15:37:25 +01:00
parent 4849f1c6ed
commit 9e88245e3d

View File

@ -1,12 +1,192 @@
#!/usr/bin/env python3 #!/usr/bin/env python3
# -*- coding: UTF-8 -*- # -*- coding: UTF-8 -*-
from pycen import update_to_sql, con_sicen from pycen import update_to_sql, con_sicen,con_gn
import geopandas as gpd import geopandas as gpd
import os import os
DIR = '/home/colas/Documents/9_PROJETS/4_SICEN/GN_MIGRATION' DIR = '/home/colas/Documents/9_PROJETS/4_SICEN/GN_MIGRATION'
def form_cdnom(data):
dict_cdnom = {
116744:521658, # Flore : Quercus petraea
}
data.replace({'cd_nom':dict_cdnom},inplace=True)
data.replace({'cd_ref':dict_cdnom},inplace=True)
def form_complx_grp(data):
dict_cdnom = {
9999005:105817, # Leucanthemum vulgare (#groupe)
9999014:119097, # Rubus fruticosus (#groupe)
9999017:717630, # Taraxacum officinale (#groupe)
9999019:126573, # Thymus serpyllum (#groupe)
9999020:129298, # Vicia sativa (#groupe)
9999023:188772, # Acrocephalus palustris / scirpaceus (#complexe)
9999031:441709, # Cairina moschata f. domestica (#forme)
9999033:190350, # Carduelis flammea flammea / cabaret / Carduelis hornemanni (#complexe)
9999037:191029, # Colias alfacariensis / hyale (#complexe)
9999041:4503, # Corvus corone corone / cornix (#complexe)
9999042:186239, # Eptesicus / Nyctalus sp. (#complexe)
9999046:192539, # Felis silvestris / catus (#complexe)
9999050:193993, # Leptidea sinapis / reali (#complexe)
9999054:194481, # Martes martes / foina (#complexe)
9999057:195005, # Myotis myotis / blythii (#complexe)
9999063:444436, # Pelophylax kl. esculentus / lessonae (#complexe)
9999064:4280, # Phylloscopus collybita tristis / "abietinus" (#complexe)
9999066:196980, # Pyrgus malvae / malvoides (#complexe)
9999074:197040, # Rana dalmatina / temporaria (#complexe)
9999075:196296, # Pipistrellus nathusii / kuhlii (#complexe)
9999080:194357, # Lysandra coridon / hispana (#complexe)
9999082:195005, # Myotis daubentonii / Myotis mystacinus (#complexe)
9999083:699094, # Pipistrellus / Miniopterus (#complexe)
}
lst_cdnom_old = [*dict_cdnom.keys()]
if data.cd_nom.isin(lst_cdnom_old).any():
data.loc[data.cd_nom.isin(lst_cdnom_old),'complexe_groupe'] = data[data.cd_nom.isin(lst_cdnom_old)].nom_complet
data.replace({'cd_nom':dict_cdnom},inplace=True)
sql = 'SELECT cd_nom, nom_complet nom_new FROM taxonomie.taxref where cd_nom in {}'.format(tuple(dict_cdnom.values()))
tax = gpd.pd.read_sql(sql, con_gn)
data = data.merge(tax,how='left',on='cd_nom')
data.loc[data.nom_new.notna(),'nom_latin'] = data[data.nom_new.notna()].nom_new
data.drop(columns='nom_new',inplace=True)
def form_precision(data):
dict_pre = {
'GPS':0,
'0 à 10m':10,
'10 à 100m':100,
'100 à 500m':500,
'lieu-dit':750,
'commune':None,
}
is_com = data.precision =='commune'
rmq_null = data.rmq_localisation.isnull()
data.loc[is_com&rmq_null,'rmq_localisation'] = 'Localisation : commune'
data.loc[is_com&~rmq_null,'rmq_localisation'] = 'Localisation : commune ;'+data[is_com].rmq_localisation
data.replace({'precision':dict_pre},inplace=True)
data.precision = data.precision.astype('Int64')
def form_effectif(data):
eff_notna = data.effectif.notna()
efmin_notna = data.effectif_min.notna()
efmax_isna = data.effectif_max.isna()
data.loc[(~eff_notna)&efmin_notna,'effectif'] = data[(~eff_notna)&efmin_notna].effectif_min
data.loc[(~eff_notna)&(~efmax_isna),'effectif'] = data[(~eff_notna)&(~efmax_isna)].effectif_max
# data.loc[efmax_isna,'effectif_max'] = data[efmax_isna].effectif
data.effectif = data.effectif.astype('Int64')
data.effectif_max = data.effectif_max.astype('Int64')
def form_date(data):
cols = data.columns[data.columns.str.contains('date')]
for col in cols:
data.loc[data[col].isna(),col] = None
def recup_stadevie(data):
dict_repro = {
'ODO_Exuvie/émergence':'Exuvie/émergence',
'ODO_Immature':'Immature',
**dict.fromkeys(['ODO_Mâles+Femelles','ODO_Tandem','ODO_Territorial','ODO_Ponte'],'Adulte'),
**dict.fromkeys(['CHIR_Indéterminé','ODO_Indéterminé'],'Indéterminé')
}
if 'age_faune' in data.columns:
age_isna = data.age_faune.isna()
age_inrmq = data.rmq_observation.str.contains('Stade de vie')
data.loc[age_isna&age_inrmq,'age_faune'] = (data[age_isna&age_inrmq].rmq_observation
.str.split('Stade de vie :')
.str[1]
.str.split('|')
.str[0]
.str.strip())
double_info = data.age_faune.isin(['Imago, adulte', 'Nymphe, immature'])
d2 = data[double_info].copy()
data.age_faune = data.age_faune.str.replace('Imago, adulte','Imago')
data.age_faune = data.age_faune.str.replace('Nymphe, immature','Nymphe')
d2.age_faune = d2.age_faune.str.replace('Imago, adulte','Adulte')
d2.age_faune = d2.age_faune.str.replace('Nymphe, immature','Immature')
data = gpd.pd.concat([data,d2])
lst_age = [*dict_repro.keys()]
age_isna = data.age_faune.isna()
t1 = age_isna&(data.reprostatut_faune.isin(lst_age))
data.loc[t1,'age_faune'] = data[t1].reprostatut_faune.replace(dict_repro)
t2 = data.age_faune=='Exuvie/émergence'
is_exuvie = (data.rmq_observation
.replace(['é','E','É'],'e',regex=True)
.str.contains('exuvie',na=False))
is_emerge = (data.rmq_observation
.replace(['é','E','É'],'e',regex=True)
.str.contains('emerge',na=False))
rmq_isna = data.rmq_observation.isna()
data.loc[is_exuvie&~is_emerge&t2,'age_faune'] = 'Exuvie'
data.loc[~is_exuvie&is_emerge&t2,'age_faune'] = 'Emergent'
data.loc[is_exuvie&is_emerge&t2,'age_faune'] = 'Exuvie'
data.loc[is_exuvie&is_emerge&rmq_isna&t2,'age_faune'] = 'Emergent'
t3 = data.age_faune=='Oeuf/ponte/larve/nymphe/chenille...'
# Odonate
is_odo = data.ordre == 'Odonata'
data.loc[t3&is_odo,'age_faune'] = 'Exuvie'
# Amphibiens
is_amphi = data.group2_inpn == 'Amphibiens'
is_larve = data.rmq_observation.str.contains('larve',na=False)
is_ponte = data.rmq_observation.str.contains('ponte',na=False)
is_tetar = data.rmq_observation.replace('ê','e',regex=True).str.contains('ponte',na=False)
is_urode = data.ordre=='Urodela'
is_anure = data.ordre=='Anura'
rmq_na = data.rmq_observation.isna()
if 'obj_denombre' not in data.columns:
data['obj_denombre'] = None
data.loc[t3&is_amphi&is_larve,'age_faune'] = 'Larve'
data.loc[t3&is_amphi&is_ponte,'age_faune'] = 'Oeufs'
data.loc[t3&is_amphi&is_ponte,'obj_denombre'] = 'Ponte'
data.loc[t3&is_amphi&is_tetar,'age_faune'] = 'Têtard'
data.loc[t3&is_amphi&is_urode&rmq_na,'age_faune'] = 'Larve'
data.loc[t3&is_amphi&is_anure&rmq_na,'age_faune'] = 'Ponte'
return data
def recup_comptmt(data):
if 'reprostatut_faune' in data.columns:
compt_isna = data.reprostatut_faune.isna()
in_rmq = data.rmq_observation.str.contains('Comp. ind')
data.loc[compt_isna&in_rmq,'comportement'] = (data[compt_isna&in_rmq].rmq_observation
.str.split('Comp. ind. :')
.str[1]
.str.split('|')
.str[0]
.str.strip())
sex_isna = data.sexe_faune.isna()
comp_isna = data.comportement.isna()
lst_comp = ['ODO_Tandem','ODO_Territorial','INV_Accouplement','INV_Chant (orthoptères)','ODO_Ponte']
t3 = (~compt_isna)&comp_isna&sex_isna&(data.reprostatut_faune.isin(lst_comp))
data.loc[t3,'comportement'] = data[t3].reprostatut_faune
def isole_rnngl():
return
def format_faune(data):
recup_comptmt(data)
return recup_stadevie(data)
def format_data(data):
form_precision(data)
form_effectif(data)
form_cdnom(data)
form_date(data)
form_complx_grp(data)
return format_faune(data)
def export(path_name, data, format='csv'): def export(path_name, data, format='csv'):
detect_date = data.columns[data.columns.str.startswith('date')] detect_date = data.columns[data.columns.str.startswith('date')]
data[detect_date] = data[detect_date].astype(str) data[detect_date] = data[detect_date].astype(str)
@ -17,25 +197,96 @@ def export(path_name, data, format='csv'):
df.to_csv(path_name+'.%s'%format) df.to_csv(path_name+'.%s'%format)
else: else:
raise('format non prévu') raise('format non prévu')
def serena_rnngl_site():
from sqlalchemy import create_engine # pour lecture de la bd
from sqlalchemy.engine import URL
from shapely.geometry import Polygon
usr = 'postgres'
pdw = 'postgres'
bdd = 'serenadb'
host = '172.17.0.2'
eng = URL.create('postgresql+psycopg2',username=usr,password=pdw,host=host,database=bdd)
conn = create_engine(eng)
sit = gpd.pd.read_sql_table('rnf_site',con=conn,schema='serenabase')
sit['poly'] = (sit
.site_poly.str[9:]
.str.split(','))
sit.loc[sit.poly.notna(),'geom'] = (sit.loc[sit.poly.notna(),'poly']
.apply(lambda x: [xx.split(' ') for xx in x if xx])
.apply(lambda x: [[float(xxx) for xxx in xx] for xx in x ])
.apply(lambda x: Polygon(x)))
return (sit
.set_geometry('geom',crs=4326)
.to_crs(2154)
.dropna(subset=['geom']))
if __name__ == "__main__":
v_synthese_invertebre = 'v_synthese_invertebre'
v_synthese_vertebre = 'v_synthese_vertebre'
v_synthese_flore = 'v_synthese_flore'
sit_rnngl = serena_rnngl_site()
sql_exclude_rnngl = " (rmq_localisation NOT ILIKE '%%lemps%%' OR NOT ST_INTERSECTS(geom,'SRID=2154;{}'))".format(sit_rnngl.unary_union)
sql_exclude_rnngl = " rmq_localisation NOT ILIKE '%%grand%%lemps%%'"
sql_inv = "SELECT * FROM saisie.%s WHERE cd_nom <> '9999081'"%v_synthese_invertebre # 9999081 : Heterocera sp.
v_inv = gpd.read_postgis(sql_inv+" AND"+sql_exclude_rnngl,con_sicen)
sql_ver = "SELECT * FROM saisie.%s WHERE cd_nom <> '9999056'"%v_synthese_vertebre # 9999056 : Micromammalia sp.
v_ver = gpd.read_postgis(sql_ver+" AND"+sql_exclude_rnngl,con_sicen)
sql_flo = 'SELECT * FROM saisie.%s'%v_synthese_flore
v_flo = gpd.read_postgis(sql_flo+" WHERE"+sql_exclude_rnngl,con_sicen).dropna(how='all',axis=1)
v_inv = format_data(v_inv)
format_data(v_ver)
format_data(v_flo)
# INVERTEBRE
for etude in v_inv.etude.unique():
exp_inv = v_inv[v_inv.etude==etude].copy()
exp_inv.dropna(how='all',inplace=True,axis=1)
if 'complexe_groupe' in exp_inv.columns:
exp_inv1 = exp_inv[exp_inv.complexe_groupe.notna()]
exp_inv2 = exp_inv[exp_inv.complexe_groupe.isna()].dropna(how='all',axis=1)
export(os.path.join(DIR,'INVERTEBRE',etude+'_GRP'),exp_inv1,format='csv')
export(os.path.join(DIR,'INVERTEBRE',etude),exp_inv2,format='csv')
else :
export(os.path.join(DIR,'INVERTEBRE',etude),exp_inv,format='csv')
# VERTEBRE
for etude in v_ver.etude.unique():
exp_ver = v_ver[v_ver.etude==etude].copy()
exp_ver.dropna(how='all',inplace=True,axis=1)
if 'complexe_groupe' in exp_ver.columns:
exp_ver1 = exp_ver[exp_ver.complexe_groupe.notna()]
exp_ver2 = exp_ver[exp_ver.complexe_groupe.isna()].dropna(how='all',axis=1)
export(os.path.join(DIR,'VERTEBRE',etude+'_GRP'),exp_ver1,format='csv')
export(os.path.join(DIR,'VERTEBRE',etude),exp_ver2,format='csv')
else :
export(os.path.join(DIR,'VERTEBRE',etude),exp_ver,format='csv')
# FLORE
for etude in v_flo.etude.unique():
exp_flo = v_flo[v_flo.etude==etude].copy()
exp_flo.dropna(how='all',inplace=True,axis=1)
if 'complexe_groupe' in exp_flo.columns:
exp_flo1 = exp_flo[exp_flo.complexe_groupe.notna()]
exp_flo2 = exp_flo[exp_flo.complexe_groupe.isna()].dropna(how='all',axis=1)
export(os.path.join(DIR,'FLORE',etude+'_GRP'),exp_flo1,format='csv')
export(os.path.join(DIR,'FLORE',etude),exp_flo2,format='csv')
else :
export(os.path.join(DIR,'FLORE',etude),exp_flo,format='csv')
v_synthese_invertebre = 'v_synthese_invertebre' # export(os.path.join(DIR,v_synthese_invertebre+'2'),v_inv.dropna(how='all',axis=1))
v_synthese_vertebre = 'v_synthese_vertebre' # export(os.path.join(DIR,v_synthese_vertebre),v_ver.dropna(how='all',axis=1))
v_synthese_flore = 'v_synthese_flore' # export(os.path.join(DIR,v_synthese_flore),v_flo)
sql = 'SELECT * FROM saisie.%s'%v_synthese_invertebre # v_ver.etude.unique()
v_inv = gpd.read_postgis(sql,con_sicen) # v_ver.protocole.unique()
sql = 'SELECT * FROM saisie.%s'%v_synthese_vertebre # v_ver.lot_donnee.unique()
v_ver = gpd.read_postgis(sql,con_sicen)
sql = 'SELECT * FROM saisie.%s'%v_synthese_flore
v_flo = gpd.read_postgis(sql,con_sicen)
export(os.path.join(DIR,v_synthese_invertebre),v_inv)
export(os.path.join(DIR,v_synthese_vertebre),v_ver)
export(os.path.join(DIR,v_synthese_flore),v_flo)
v_ver.etude.unique()
v_ver.protocole.unique()
v_ver.lot_donnee.unique()