#!/usr/bin/env python # -*- coding: UTF-8 -*- from pycen import con_fon import pandas as pd dico_data = '/media/colas/SRV/FICHIERS/OUTILS/BASES DE DONNEES/BILAN_FEDE_CEN/2024/TDB2024_enquete_SIG/Dico_DATA_sites_CEN_v2024.xlsx' bilan_2023 = '/media/colas/SRV/FICHIERS/OUTILS/BASES DE DONNEES/BILAN_FEDE_CEN/2024/TDB2024_enquete_SIG/DATA N-1/Sites_CEN_38_2023.csv' dic = pd.read_excel(dico_data,sheet_name='sites_cen_xx_2024',header=0, usecols='F',nrows=50) dic_head_name = dic.columns[0] bil2023 = pd.read_csv(bilan_2023,sep=',',header=0,encoding='utf-8') # Mise en forme des dates date_cols = bil2023.columns[bil2023.columns.str.contains('date')] bil2023[date_cols] = bil2023[date_cols].apply(pd.to_datetime) # Mise en forme de la colonne remq_sensibilite vm_site = pd.read_sql_table('vm_sites_cen_2024_csv',con_fon,'_tdbfcen') dic_missing = (dic.loc[~dic[dic_head_name].isin(vm_site.columns),dic_head_name] .tolist()) (bil2023[['id_site_cen',*dic_missing]] .merge(vm_site[['id_site_cen']],how='inner',on='id_site_cen') .to_sql( '_sites_cen_2023_csv_complement', con_fon, schema='_tdbfcen', if_exists='replace', index=False))