#!/usr/bin/env python3 # -*- coding: UTF-8 -*- from pycen import update_to_sql, con_sicen,con_gn import geopandas as gpd import os DIR = '/home/colas/Documents/9_PROJETS/4_SICEN/GN_MIGRATION' def form_cdnom(data): dict_cdnom = { 116744:521658, # Flore : Quercus petraea } data.replace({'cd_nom':dict_cdnom},inplace=True) data.replace({'cd_ref':dict_cdnom},inplace=True) def form_complx_grp(data): dict_cdnom = { 9999005:105817, # Leucanthemum vulgare (#groupe) 9999014:119097, # Rubus fruticosus (#groupe) 9999017:717630, # Taraxacum officinale (#groupe) 9999019:126573, # Thymus serpyllum (#groupe) 9999020:129298, # Vicia sativa (#groupe) 9999023:188772, # Acrocephalus palustris / scirpaceus (#complexe) 9999031:441709, # Cairina moschata f. domestica (#forme) 9999033:190350, # Carduelis flammea flammea / cabaret / Carduelis hornemanni (#complexe) 9999037:191029, # Colias alfacariensis / hyale (#complexe) 9999041:4503, # Corvus corone corone / cornix (#complexe) 9999042:186239, # Eptesicus / Nyctalus sp. (#complexe) 9999046:192539, # Felis silvestris / catus (#complexe) 9999050:193993, # Leptidea sinapis / reali (#complexe) 9999054:194481, # Martes martes / foina (#complexe) 9999057:195005, # Myotis myotis / blythii (#complexe) 9999063:444436, # Pelophylax kl. esculentus / lessonae (#complexe) 9999064:4280, # Phylloscopus collybita tristis / "abietinus" (#complexe) 9999066:196980, # Pyrgus malvae / malvoides (#complexe) 9999074:197040, # Rana dalmatina / temporaria (#complexe) 9999075:196296, # Pipistrellus nathusii / kuhlii (#complexe) 9999080:194357, # Lysandra coridon / hispana (#complexe) 9999082:195005, # Myotis daubentonii / Myotis mystacinus (#complexe) 9999083:699094, # Pipistrellus / Miniopterus (#complexe) } lst_cdnom_old = [*dict_cdnom.keys()] if data.cd_nom.isin(lst_cdnom_old).any(): data.loc[data.cd_nom.isin(lst_cdnom_old),'complexe_groupe'] = data[data.cd_nom.isin(lst_cdnom_old)].nom_complet data.replace({'cd_nom':dict_cdnom},inplace=True) sql = 'SELECT cd_nom, nom_complet nom_new FROM taxonomie.taxref where cd_nom in {}'.format(tuple(dict_cdnom.values())) tax = gpd.pd.read_sql(sql, con_gn) data = data.merge(tax,how='left',on='cd_nom') data.loc[data.nom_new.notna(),'nom_latin'] = data[data.nom_new.notna()].nom_new data.drop(columns='nom_new',inplace=True) def form_precision(data): dict_pre = { 'GPS':0, '0 à 10m':10, '10 à 100m':100, '100 à 500m':500, 'lieu-dit':750, 'commune':None, } is_com = data.precision =='commune' rmq_null = data.rmq_localisation.isnull() data.loc[is_com&rmq_null,'rmq_localisation'] = 'Localisation : commune' data.loc[is_com&~rmq_null,'rmq_localisation'] = 'Localisation : commune ;'+data[is_com].rmq_localisation data.replace({'precision':dict_pre},inplace=True) data.precision = data.precision.astype('Int64') def form_effectif(data): eff_notna = data.effectif.notna() efmin_notna = data.effectif_min.notna() efmax_isna = data.effectif_max.isna() data.loc[(~eff_notna)&efmin_notna,'effectif'] = data[(~eff_notna)&efmin_notna].effectif_min data.loc[(~eff_notna)&(~efmax_isna),'effectif'] = data[(~eff_notna)&(~efmax_isna)].effectif_max # data.loc[efmax_isna,'effectif_max'] = data[efmax_isna].effectif data.effectif = data.effectif.astype('Int64') data.effectif_max = data.effectif_max.astype('Int64') def form_date(data): cols = data.columns[data.columns.str.contains('date')] for col in cols: data.loc[data[col].isna(),col] = None def recup_stadevie(data): dict_repro = { 'ODO_Exuvie/émergence':'Exuvie/émergence', 'ODO_Immature':'Immature', **dict.fromkeys(['ODO_Mâles+Femelles','ODO_Tandem','ODO_Territorial','ODO_Ponte'],'Adulte'), **dict.fromkeys(['CHIR_Indéterminé','ODO_Indéterminé'],'Indéterminé') } if 'age_faune' in data.columns: age_isna = data.age_faune.isna() age_inrmq = data.rmq_observation.str.contains('Stade de vie') data.loc[age_isna&age_inrmq,'age_faune'] = (data[age_isna&age_inrmq].rmq_observation .str.split('Stade de vie :') .str[1] .str.split('|') .str[0] .str.strip()) double_info = data.age_faune.isin(['Imago, adulte', 'Nymphe, immature']) d2 = data[double_info].copy() data.age_faune = data.age_faune.str.replace('Imago, adulte','Imago') data.age_faune = data.age_faune.str.replace('Nymphe, immature','Nymphe') d2.age_faune = d2.age_faune.str.replace('Imago, adulte','Adulte') d2.age_faune = d2.age_faune.str.replace('Nymphe, immature','Immature') data = gpd.pd.concat([data,d2]) lst_age = [*dict_repro.keys()] age_isna = data.age_faune.isna() t1 = age_isna&(data.reprostatut_faune.isin(lst_age)) data.loc[t1,'age_faune'] = data[t1].reprostatut_faune.replace(dict_repro) t2 = data.age_faune=='Exuvie/émergence' is_exuvie = (data.rmq_observation .replace(['é','E','É'],'e',regex=True) .str.contains('exuvie',na=False)) is_emerge = (data.rmq_observation .replace(['é','E','É'],'e',regex=True) .str.contains('emerge',na=False)) rmq_isna = data.rmq_observation.isna() data.loc[is_exuvie&~is_emerge&t2,'age_faune'] = 'Exuvie' data.loc[~is_exuvie&is_emerge&t2,'age_faune'] = 'Emergent' data.loc[is_exuvie&is_emerge&t2,'age_faune'] = 'Exuvie' data.loc[is_exuvie&is_emerge&rmq_isna&t2,'age_faune'] = 'Emergent' t3 = data.age_faune=='Oeuf/ponte/larve/nymphe/chenille...' # Odonate is_odo = data.ordre == 'Odonata' data.loc[t3&is_odo,'age_faune'] = 'Exuvie' # Amphibiens is_amphi = data.group2_inpn == 'Amphibiens' is_larve = data.rmq_observation.str.contains('larve',na=False) is_ponte = data.rmq_observation.str.contains('ponte',na=False) is_tetar = data.rmq_observation.replace('ê','e',regex=True).str.contains('ponte',na=False) is_urode = data.ordre=='Urodela' is_anure = data.ordre=='Anura' rmq_na = data.rmq_observation.isna() if 'obj_denombre' not in data.columns: data['obj_denombre'] = None data.loc[t3&is_amphi&is_larve,'age_faune'] = 'Larve' data.loc[t3&is_amphi&is_ponte,'age_faune'] = 'Oeufs' data.loc[t3&is_amphi&is_ponte,'obj_denombre'] = 'Ponte' data.loc[t3&is_amphi&is_tetar,'age_faune'] = 'Têtard' data.loc[t3&is_amphi&is_urode&rmq_na,'age_faune'] = 'Larve' data.loc[t3&is_amphi&is_anure&rmq_na,'age_faune'] = 'Ponte' return data def recup_comptmt(data): if 'reprostatut_faune' in data.columns: compt_isna = data.reprostatut_faune.isna() in_rmq = data.rmq_observation.str.contains('Comp. ind') data.loc[compt_isna&in_rmq,'comportement'] = (data[compt_isna&in_rmq].rmq_observation .str.split('Comp. ind. :') .str[1] .str.split('|') .str[0] .str.strip()) sex_isna = data.sexe_faune.isna() comp_isna = data.comportement.isna() lst_comp = ['ODO_Tandem','ODO_Territorial','INV_Accouplement','INV_Chant (orthoptères)','ODO_Ponte'] t3 = (~compt_isna)&comp_isna&sex_isna&(data.reprostatut_faune.isin(lst_comp)) data.loc[t3,'comportement'] = data[t3].reprostatut_faune def isole_rnngl(): return def format_faune(data): recup_comptmt(data) return recup_stadevie(data) def format_data(data): form_precision(data) form_effectif(data) form_cdnom(data) form_date(data) form_complx_grp(data) return format_faune(data) def export(path_name, data, format='csv'): detect_date = data.columns[data.columns.str.startswith('date')] data[detect_date] = data[detect_date].astype(str) df = data.to_wkt().drop(columns='geom',errors='ignore') if format=='xlsx': df.to_excel(path_name+'.%s'%format) elif format=='csv': df.to_csv(path_name+'.%s'%format) else: raise('format non prévu') def serena_rnngl_site(): from sqlalchemy import create_engine # pour lecture de la bd from sqlalchemy.engine import URL from shapely.geometry import Polygon usr = 'postgres' pdw = 'postgres' bdd = 'serenadb' host = '172.17.0.2' eng = URL.create('postgresql+psycopg2',username=usr,password=pdw,host=host,database=bdd) conn = create_engine(eng) sit = gpd.pd.read_sql_table('rnf_site',con=conn,schema='serenabase') sit['poly'] = (sit .site_poly.str[9:] .str.split(',')) sit.loc[sit.poly.notna(),'geom'] = (sit.loc[sit.poly.notna(),'poly'] .apply(lambda x: [xx.split(' ') for xx in x if xx]) .apply(lambda x: [[float(xxx) for xxx in xx] for xx in x ]) .apply(lambda x: Polygon(x))) return (sit .set_geometry('geom',crs=4326) .to_crs(2154) .dropna(subset=['geom'])) if __name__ == "__main__": v_synthese_invertebre = 'v_synthese_invertebre' v_synthese_vertebre = 'v_synthese_vertebre' v_synthese_flore = 'v_synthese_flore' sit_rnngl = serena_rnngl_site() sql_exclude_rnngl = " (rmq_localisation NOT ILIKE '%%lemps%%' OR NOT ST_INTERSECTS(geom,'SRID=2154;{}'))".format(sit_rnngl.unary_union) sql_exclude_rnngl = " rmq_localisation NOT ILIKE '%%grand%%lemps%%'" sql_inv = "SELECT * FROM saisie.%s WHERE cd_nom <> '9999081'"%v_synthese_invertebre # 9999081 : Heterocera sp. v_inv = gpd.read_postgis(sql_inv+" AND"+sql_exclude_rnngl,con_sicen) sql_ver = "SELECT * FROM saisie.%s WHERE cd_nom <> '9999056'"%v_synthese_vertebre # 9999056 : Micromammalia sp. v_ver = gpd.read_postgis(sql_ver+" AND"+sql_exclude_rnngl,con_sicen) sql_flo = 'SELECT * FROM saisie.%s'%v_synthese_flore v_flo = gpd.read_postgis(sql_flo+" WHERE"+sql_exclude_rnngl,con_sicen).dropna(how='all',axis=1) v_inv = format_data(v_inv) format_data(v_ver) format_data(v_flo) # INVERTEBRE for etude in v_inv.etude.unique(): exp_inv = v_inv[v_inv.etude==etude].copy() exp_inv.dropna(how='all',inplace=True,axis=1) if 'complexe_groupe' in exp_inv.columns: exp_inv1 = exp_inv[exp_inv.complexe_groupe.notna()] exp_inv2 = exp_inv[exp_inv.complexe_groupe.isna()].dropna(how='all',axis=1) export(os.path.join(DIR,'INVERTEBRE',etude+'_GRP'),exp_inv1,format='csv') export(os.path.join(DIR,'INVERTEBRE',etude),exp_inv2,format='csv') else : export(os.path.join(DIR,'INVERTEBRE',etude),exp_inv,format='csv') # VERTEBRE for etude in v_ver.etude.unique(): exp_ver = v_ver[v_ver.etude==etude].copy() exp_ver.dropna(how='all',inplace=True,axis=1) if 'complexe_groupe' in exp_ver.columns: exp_ver1 = exp_ver[exp_ver.complexe_groupe.notna()] exp_ver2 = exp_ver[exp_ver.complexe_groupe.isna()].dropna(how='all',axis=1) export(os.path.join(DIR,'VERTEBRE',etude+'_GRP'),exp_ver1,format='csv') export(os.path.join(DIR,'VERTEBRE',etude),exp_ver2,format='csv') else : export(os.path.join(DIR,'VERTEBRE',etude),exp_ver,format='csv') # FLORE for etude in v_flo.etude.unique(): exp_flo = v_flo[v_flo.etude==etude].copy() exp_flo.dropna(how='all',inplace=True,axis=1) if 'complexe_groupe' in exp_flo.columns: exp_flo1 = exp_flo[exp_flo.complexe_groupe.notna()] exp_flo2 = exp_flo[exp_flo.complexe_groupe.isna()].dropna(how='all',axis=1) export(os.path.join(DIR,'FLORE',etude+'_GRP'),exp_flo1,format='csv') export(os.path.join(DIR,'FLORE',etude),exp_flo2,format='csv') else : export(os.path.join(DIR,'FLORE',etude),exp_flo,format='csv') # export(os.path.join(DIR,v_synthese_invertebre+'2'),v_inv.dropna(how='all',axis=1)) # export(os.path.join(DIR,v_synthese_vertebre),v_ver.dropna(how='all',axis=1)) # export(os.path.join(DIR,v_synthese_flore),v_flo) # v_ver.etude.unique() # v_ver.protocole.unique() # v_ver.lot_donnee.unique()