from pycen import con_gn import numpy as np import pandas as pd import os def get_status(lst): sql = """ SELECT t.cd_nom, t.cd_ref, t.regne, t.phylum, t.classe, t.ordre, t.famille, t.group1_inpn, t.group2_inpn, t.nom_vern, t.nom_complet, t.nom_valide, t.lb_nom, --s.* s.rq_statut, s.code_statut, s.cd_type_statut, s.label_statut, s.full_citation, s.doc_url FROM taxonomie.taxref t JOIN taxonomie.v_bdc_status s USING (cd_nom) WHERE t.cd_nom IN {cd_nom} ;""".format(cd_nom = tuple(lst)) return pd.read_sql_query(sql,con_gn) dict_dep = { '38':'Isère', '42':'Loire', '07':'Ardèche', '26':'Drôme', } if __name__ == "__main__": PATH = '/media/colas/SRV/FICHIERS/SITES/SITES GERES/ROLA_ROLANDE-MAUPAS/ROLA_PPI/ROLA_2025-2034_PG/donneesnaturalistes' file = 'liste sp_ROLA.xlsx' sheet = 'liste sp' # Liste des CD_NOM en entrée cd_col = 'cd_ref' taxlist = pd.read_excel(os.path.join(PATH,file),sheet,usecols=[cd_col],header=0) tab_sp = pd.read_excel(os.path.join(PATH,file),sheet,index_col=cd_col) df = get_status(taxlist[cd_col].astype(str)) for c in ['cd_ref','cd_nom','lb_nom']: if c in tab_sp.columns: # if 'cd_nom' not in df.columns and c == 'cd_ref': continue tab_sp.drop(c,axis=1,inplace=True) # df.to_csv('/media/colas/SRV/FICHIERS/TRANSFERTS-EQUIPE/LC/BOCA_CD_NOM_STATUS.csv') pivot = pd.pivot_table( df, values='code_statut', index=['cd_nom', 'cd_ref','lb_nom'#,'niveau_admin','lb_adm_tr' ], columns=['cd_type_statut'], aggfunc=list,fill_value=None) for c in pivot.columns: pivot[c] = [x[0] if x is not np.NaN and len(x)==1 else x for x in pivot[c]] if 'DH' in pivot.columns: pivot['DH'] = [','.join(x) if (x is not np.NaN) and (len(x)==2) else x for x in pivot['DH']] pivot.DH.replace({'CDH':''},regex=True,inplace=True) pivot = tab_sp.merge(pivot,on=[cd_col],how='left') pivlib = pd.pivot_table( df, values='label_statut', index=['cd_nom', 'cd_ref','lb_nom'#,'niveau_admin','lb_adm_tr' ], columns=['cd_type_statut'], aggfunc=list,fill_value=None) for c in pivlib.columns: pivlib[c] = [x[0] if x is not np.NaN and len(x)==1 else x for x in pivlib[c]] if 'DH' in pivot.columns: pivlib['DH'] = [','.join(x) if (x is not np.NaN) and (len(x)==2) else x for x in pivlib['DH']] pivlib.DH.replace({'CDH':''},regex=True,inplace=True) pivlib = tab_sp.merge(pivlib,on=[cd_col],how='left') print('INIT writer') NAME_OUT = os.path.join(PATH,sheet+'_status.xlsx') with pd.ExcelWriter(NAME_OUT) as writer: df.to_excel( writer,sheet_name='v_bdc_status',index=False ) # writer.save() print('v_bdc_status OK !') pivot.to_excel( writer,sheet_name='pivot_table' ) # writer.save() print('pivot_table OK !') pivlib.to_excel( writer,sheet_name='pivot_libel' ) # writer.save() print('pivot_libel OK !')