#!/usr/bin/env python3 # -*- coding: UTF-8 -*- from sqlalchemy import create_engine from sqlalchemy.engine import URL from datetime import datetime as dt import pandas as pd import pycen # Parametres bdd user = 'cgeier' pwd = 'adm1n*bdCen' adr = '91.134.194.221' port = '5432' base = 'sicen2' url = URL.create('postgresql+psycopg2', username=user, password=pwd, host=adr, database=base, ) con = create_engine(url) sch = 'saisie' tab = 'saisie_observation' ids = 'id_obs' col_updt = 'phenologie' sql = """ SELECT {ids}, {col} FROM {sch}.{tab} WHERE {col} = 'Inderterminé' """.format(sch=sch,tab=tab,ids=ids,col=col_updt) df = pd.read_sql_query(sql,con) df[col_updt] = 'Indéterminé' pycen.update_to_sql(df,con,tab,sch,ids,geom_col=None) tab_suivi = 'suivi_saisie_observation' ids_suivi = ['operation','date_operation','id_obs'] col_updtSuivi = 'utilisateur' date = dt.today().date().isoformat() sql = """ SELECT {ids}, {col} FROM {sch}.{tab} WHERE {col} = 'inconnu' AND date_operation > '{date}' """.format(sch=sch,tab=tab_suivi,ids=','.join(ids_suivi),col=col_updtSuivi, date=date) df = pd.read_sql_query(sql,con) df[col_updtSuivi] = 'colas.geier@cen-isere.org' pycen.update_to_sql( df, con, table_name=tab_suivi, schema_name=sch, key_name = ids_suivi, geom_col=None)