Python_scripts/0_FONCIER/foncier_insert_cadastre_V2.py

614 lines
23 KiB
Python
Executable File

#!/usr/bin/env python3
# -*- coding: UTF-8 -*-
#Nom : : foncier_insert_table.py
#Description : Insertion des données cadastrales à la base <foncier>.
#Copyright : 2021, CEN38
#Auteur : Colas Geier
#Version : 2.0
from sqlalchemy import create_engine, text
from geoalchemy2 import Geometry # need for pandas
import datetime as dt
import pandas as pd
import sys
# Parametrage geopandas
import geopandas as gpd
import warnings; warnings.filterwarnings('ignore', 'GeoSeries.isna', UserWarning)
check_duplicates = True
debug = True
# Parametres bdd CADASTRE (in)
# Données de sortie du plugin qgis "Cadastre"
# Les schéma ont une nomenclarture numérique du type "dep_nom"
user_cad = 'postgres' # utilisateur de connexion à la bdd
pwd_cad = 'foncier_test1' # mot de passe de la bdd
adr_cad = '172.17.0.2' # adresse ip de la bdd
port_cad = '5432' # port de la bdd
base_cad = 'postgres' # nom de la bdd
schema_cad = '202007' # nom unique qui compose le nom des schémas cibles de l'année à récupérer
list_dep = ['07', '26', '42', '38'] # liste des départements
# Parametres bdd FONCIER (out)
user_fon = 'colas_geier'
pwd_fon = 'adm1n*fOncier'
adr_fon = '91.134.194.221'
# user_fon = 'postgres' # utilisateur de connexion à la bdd
# pwd_fon = 'tutu' # mot de passe de la bdd
# adr_fon = '192.168.60.9' # adresse ip de la bdd
port_fon = '5432' # port de la bdd
base_fon = 'bd_cen' # nom de la bdd
schema_fon = 'cadastre' # nom du schéma cible dans la bdd
sufx_nom_tab = '_38' # sufixe du nom des tables où insérer la données dans le schéma cadastre (ex: _dep)
# Correspondance entre les tables
epsg = '2154' # code EPSG de la projection géographique en entrée.
crs = 'EPSG:%s'%epsg
chunk = 100000
# Il existe parfois des doublons en raison d'orthographes voisinent (entre autres)
# dans les tables de sortie du du plugin qgis "Cadastre"
FIND_DOUBLON = [{
'tab_in': 'proprietaire', # nom de la table où des doublons se trouvent
'on_col': ['ddenom', 'dprnlp', 'dldnss','jdatnss','ccogrm','dsglpm','dnatpr'] } # nom des champs où des corrections sont nécessaires
]
DICT_TAB = [{
'table_in' : 'proprietaire', # Table source qui provient de la sortie du plugin cadastre de qgis
'index_tab': 'proprietaire', # Pkey de la table source
'columns_in': ['ccodep', 'ccocom', 'dnupro', # Liste exaustive des champs à récupérer dans la table source
'dnuper', 'ccoqua', 'ddenom', 'jdatnss', 'dldnss', 'dsglpm', 'dlign3', 'dlign4', 'dlign5', 'dlign6', 'dnatpr', 'gtoper', 'ccogrm'],
'table_out': [{
'name': 'cptprop{}'.format(sufx_nom_tab), # Nom de la table cible
'geom': None, # Existance d'une géometrie à récupérer pour insertion (Non: None, Oui: cf tab_out parcelle_xx ci-dessous)
'drop_escape': False, # Supprime les champs vides à l'intérieure des chaines de carractères
'columns_in': ['ccodep', 'ccocom', 'dnupro'], # Liste des columns à récupérer en entrée.
'columns_add': {'dnupro': ['ccodep', 'ccocom', 'dnupro']}, # Définition des champs composés devant être ajoutés
'unique': {'cols': ['dnupro'], 'keep': 'first'}, # Champs devant être uniques à l'intérieur de la table en sortie, keep: ['first', 'last', False]
'dict': None, # Dictionnaire pour renommer les champs {'ancien_nom1': 'nouveau_nom1', 'ancien_nom2': 'nouveau_nom2', ...}
'join': [{ # Jointure de tables à réaliser.
'bdd': 'in', # ['in', 'out']: jointure des tables à l'import / avant export
'table': 'suf', # Nom de la table à joindre
'select_cols' : ['ccodep', 'ccocom', 'dnupro'], # Nom des champs à récupérer
'on': ['ccodep', 'ccocom', 'dnupro'], # Nom des champs sur lesquelles faire la jointure
'type': 'concat' # Type de jointure à réaliser ['concat', 'merge', 'isin', 'notin']
# 'concat': concatène les 2 tables; 'merge': merge les 2 tables en fonction du paramètre 'on'
# 'isin': Conservation des données présentent dans les 2 tables en fonction du paramètre 'on'
# 'notin': Conservation des données NON présentent dans la table 'join' en fonction du paramètre 'on'
},{
'bdd': 'in', 'table': 'lots', 'on': ['ccodep', 'ccocom', 'dnupro'], 'type': 'concat',
'select_cols' : ['ccodep', 'ccocom', 'dnuprol'],'dict': {'dnuprol': 'dnupro'}},{
'bdd': 'in', 'table': 'parcelle', 'on': ['ccodep', 'ccocom', 'dnupro'], 'type': 'concat',
'select_cols' : ['ccodep', 'ccocom', 'dnupro']},]
},{
'name': 'proprios{}'.format(sufx_nom_tab),
'geom': None,
'drop_escape': True,
'columns_in': ['ccodep', 'dnuper', 'ccoqua', 'ddenom', 'jdatnss', 'dldnss', 'dsglpm', 'dlign3', 'dlign4', 'dlign5', 'dlign6', 'dnatpr', 'gtoper', 'ccogrm'],
'columns_add': {'dnuper': ['ccodep', 'dnuper']},
'unique': {'cols': ['dnuper'], 'keep': 'first'},
'dict': None,
'join': False
},{
'name': 'r_prop_cptprop{}'.format(sufx_nom_tab),
'geom': None,
'drop_escape': True,
'columns_in': ['ccodep', 'dnuper', 'ccocom', 'dnupro', 'dnomlp', 'dprnlp', 'epxnee', 'dnomcp', 'dprncp', 'ccodro', 'ccodem'],
'columns_add': {
'dnuper': ['ccodep', 'dnuper'],
'dnupro': ['ccodep', 'ccocom', 'dnupro']},
'unique': {'cols': ['dnupro', 'dnuper'], 'keep': 'first'},
'dict': None,
'join': False
},]
},{
'table_in' : 'parcelle',
'index_tab': 'parcelle',
'columns_in' : ['ccodep', 'ccocom', 'ccopre', 'ccosec', 'dnupla', 'ccovoi', 'dparpi', 'dcntpa', 'ccocomm', 'ccoprem', 'ccosecm', 'dnuplam', 'dvoilib', 'type_filiation'],
'table_out': [{
'name': 'vl{}'.format(sufx_nom_tab),
'geom': None,
'drop_escape': False,
'columns_in' : ['ccodep', 'ccocom', 'ccovoi', 'dvoilib'],
'columns_add': {
'vl_id': ['ccodep', 'ccocom', 'ccovoi'],
'geom': None},
'unique': {'cols': ['vl_id'], 'keep': 'first'},
'dict': {'dvoilib': 'libelle'},
'join': [{
'bdd': 'in', 'table': 'voie', 'on': ['ccodep', 'ccocom', 'ccovoi'], 'type': 'concat',
'select_cols' : ['ccodep', 'ccocom', 'codvoi', 'libvoi'],
'dict': {'libvoi': 'libelle', 'codvoi': 'ccovoi'},
}]
},{
'name': 'parcelles{}'.format(sufx_nom_tab),
'geom': {
'table_geom_in': 'geo_parcelle',
'index_geom': 'geo_parcelle'
},
'drop_escape': True,
'columns_in' : ['ccodep', 'ccocom', 'ccopre', 'ccosec', 'dnupla', 'ccovoi', 'dparpi', 'dcntpa', 'ccocomm', 'ccoprem', 'ccosecm', 'dnuplam', 'type_filiation'],
'columns_add': {
'par_id': ['ccodep', 'ccocom', 'ccopre','ccosec', 'dnupla'],
'codcom': ['ccodep', 'ccocom'],
'vl_id': ['ccodep', 'ccocom', 'ccovoi'],
'typprop_id': None },
'unique': False,
'dict': {'type_filiation': 'type'},
'join': False
},{
'name': 'lots{}'.format(sufx_nom_tab),
'geom': None,
'drop_escape': True,
'columns_in' : ['ccodep', 'ccocom', 'ccopre', 'ccosec', 'dnupla', 'dcntpa'],
'columns_add': {
'lot_id': ['ccodep', 'ccocom', 'ccopre', 'ccosec', 'dnupla'],
'par_id': ['ccodep', 'ccocom', 'ccopre', 'ccosec', 'dnupla'],
'dnulot': None, },
'unique': False,
'dict': {'dcntpa': 'dcntlo'},
'join': [{'bdd': 'out', 'table': 'parcelles{}'.format(sufx_nom_tab), 'on': ['par_id'], 'type': 'isin',
'select_cols' :['par_id'] }]
},]
},{
'table_in' : 'lots',
'index_tab': 'lots',
'columns_in' : ['ccodep', 'ccocom', 'ccopre', 'ccosec', 'dnupla', 'dnulot', 'dnupdl', 'dcntlo', 'dnuprol'],
'table_out': [{
'name': 'lots{}'.format(sufx_nom_tab),
'geom': None,
'drop_escape': True,
'columns_in' : ['ccodep', 'ccocom', 'ccopre', 'ccosec', 'dnupla', 'dnulot', 'dnupdl', 'dcntlo'],
'columns_add': {
'lot_id': ['ccodep', 'ccocom', 'ccopre', 'ccosec', 'dnupla', 'dnulot'],
'par_id': ['ccodep', 'ccocom', 'ccopre', 'ccosec', 'dnupla'],},
'unique': {'cols': ['lot_id'], 'keep': 'first'},
'dict': None,
'join': [{'bdd': 'out', 'table': 'parcelles{}'.format(sufx_nom_tab), 'on': ['par_id'], 'type': 'isin',
'select_cols' :['par_id'] }]
},{
'name': 'lots_natcult{}'.format(sufx_nom_tab),
'geom': None,
'drop_escape': True,
'columns_in' : ['ccodep', 'ccocom', 'ccopre', 'ccosec', 'dnupla', 'dnulot'],
'columns_add': {
'lot_id': ['ccodep', 'ccocom', 'ccopre', 'ccosec', 'dnupla', 'dnulot'],},
'unique': {'cols': ['lot_id'], 'keep': 'first'},
'dict': None,
'join': [{
'bdd': 'in', 'table': 'suf', 'on': ['ccodep', 'ccocom', 'ccopre', 'ccosec', 'dnupla', 'dnulot'], 'type': 'merge',
'select_cols' : ['ccodep', 'ccocom', 'ccopre', 'ccosec', 'dnupla', 'dnulot','dsgrpf','cnatsp','dclssf','ccosub','dcntsf'],
},{
'bdd': 'out', 'table': 'lots{}'.format(sufx_nom_tab), 'on': ['lot_id'], 'type': 'isin',
'select_cols' :['lot_id'] }]
},{
'name': 'cadastre{}'.format(sufx_nom_tab),
'geom': None,
'drop_escape': True,
'columns_in' : ['ccodep', 'ccocom', 'ccopre', 'ccosec', 'dnupla', 'dnulot', 'dnuprol'],
'columns_add': {
'lot_id': ['ccodep', 'ccocom', 'ccopre', 'ccosec', 'dnupla', 'dnulot'],
'dnupro': ['ccodep', 'ccocom', 'dnuprol'],},
'unique': {'cols': ['lot_id', 'dnupro'], 'keep': 'first'},
'dict': None,
'join': [{
'bdd': 'in', 'table': 'suf', 'on': ['ccodep', 'ccocom', 'ccopre', 'ccosec', 'dnupla', 'dnulot', 'dnuprol'], 'type': 'concat',
'select_cols' : ['ccodep', 'ccocom', 'ccopre', 'ccosec', 'dnupla', 'dnulot', 'dnupro'], 'dict': {'dnupro': 'dnuprol'}
},{
'bdd': 'in', 'table': 'parcelle', 'on': ['ccodep', 'ccocom', 'ccopre', 'ccosec', 'dnupla', 'dnuprol'], 'type': 'concat',
'select_cols' : ['ccodep', 'ccocom', 'ccopre', 'ccosec', 'dnupla', 'dnupro'], 'dict': {'dnupro': 'dnuprol'}
},{
'bdd': 'out', 'table': 'lots{}'.format(sufx_nom_tab), 'on': ['lot_id'], 'type': 'isin',
'select_cols' :['lot_id'] },{
'bdd': 'out', 'table': 'cptprop{}'.format(sufx_nom_tab), 'on': ['dnupro'], 'type': 'isin',
'select_cols' :['dnupro'] },]
},]
}]
################################
########## Fonctions ##########
################################
start_time = dt.datetime.today()
def time_exec (init_time):
time = dt.datetime.today() - init_time
return str(time)
def replace_escape_by_0 (df):
# Remplacement des espaces dans les chaines de caractères par des 0
# if 'ccopre' in df.columns:
# df['ccopre'].replace([None, '', ' '], '000', inplace=True)
cols = ['ccopre', 'ccosec', 'dnupla', 'dparpi', 'dnuplam', 'dclssf', 'ccovoi']
for col in cols:
if col in df.columns:
df[col].replace([' '], '0', regex=True, inplace=True)
return df
def join_data (df, join, schema_in):
# Jointure des données avec une autre table
table = join['table']
bdd = join['bdd']
typ = join['type']
on = join['on']
if bdd == 'out':
con = engine_fon
sch = schema_fon
if bdd == 'in':
con = engine_cad
sch = schema_in
select_col = []
if 'select_cols' in join.keys():
select_col.extend(join['select_cols'])
if 'where' in join.keys():
select_col.extend(join['where'].keys())
tmp = pd.read_sql_table(
table_name = table,
con = con,
schema = sch,
columns = select_col
)
tmp = replace_escape_by_0(tmp)
if 'dict' in join.keys():
tmp.rename(columns=join['dict'], inplace=True)
if 'where' in join.keys():
where = join['where']
for key in where.keys():
tmp = tmp[tmp[key] == where[key] ]
if typ in ['isin', 'notin']:
for d in [df, tmp]:
d['on'] = ''
for col in on:
d['on'] += d[col].astype(str)
if typ == 'isin':
df = df[df['on'].isin(tmp['on'])]
if typ == 'notin':
df = df[~df['on'].isin(tmp['on'])]
df.drop(columns='on', inplace=True)
if typ == 'merge':
df = df.merge(tmp, on = on, how='left')
if typ == 'concat':
df = pd.concat([df,tmp], ignore_index=True).drop_duplicates()
return df
def get_geom_parcelle (df,get_geo,schema):
print('INIT import geodata ........... %s sec'%( time_exec(start_time) ))
# Définition des variables géometriques
ind_geo = get_geo['index_geom']
tab_geo = get_geo['table_geom_in']
sql = """select distinct on (t2.{0})
t2.{0},
t1.geom,
t1.supf::integer as dcntpa -- récupération de la contenance cadastrale associée car présence de géometrie non référencées dans la table "parcelles"
FROM "{1}".{2} t1
INNER JOIN (select distinct on ({0}) {0}, max(creat_date) creat_date, max(update_dat) update_dat FROM "{1}".{2} GROUP BY ({0})) t2
USING ({0}, creat_date, update_dat)""".format(ind_geo, schema, tab_geo)
tmp = gpd.read_postgis(
sql = sql,
con = engine_cad,
geom_col = 'geom',
crs = crs,
chunksize = chunk,
)
if chunk:
gdf = gpd.GeoDataFrame(pd.concat(tmp, ignore_index=True))
else:
gdf = tmp.copy()
del tmp
gdf.set_index(ind_geo, inplace=True)
gdf.index.name = ind_in
print('END import geodata ........... %s sec'%( time_exec(start_time) ))
print('INIT merge data - geodata ........... %s sec'%( time_exec(start_time) ))
if not gdf[gdf.dcntpa.isna()].empty:
gdf.dcntpa.fillna(0, inplace=True)
gdf['dcntpa'] = gdf['dcntpa'].astype(df.dtypes['dcntpa'].type)
tmp = gdf.merge(df, on = [ind_in, 'dcntpa'], how='right')
tmp = tmp.set_geometry('geom', drop=True, crs=crs)
tmp.rename(columns={'geometry': 'geom'}, inplace=True)
if tmp[tmp.geom.isna()].empty:
lst_ind_df = tmp[tmp.geom.isna()].index.tolist()
lst_ind_gdf = gdf.loc[gdf.index.isin(lst_ind_df)].index.tolist()
tmp.loc[tmp.index.isin(lst_ind_gdf), 'geom'] = gdf.loc[gdf.index.isin(lst_ind_gdf), 'geom']
del [gdf, df]
gdf = tmp.copy()
del tmp
export_data(gdf)
def export_data(df):
print('INIT export data TO {0}, {1} ........... {2} sec'.format(tab_out, df.shape[0], time_exec(start_time) ))
rang = [e for e in range(0, df.shape[0], chunk*5)]
cd1 = 'jdatnss' in df.columns
if cd1 :
tmp = df.jdatnss.str.split(r'/',expand=True)
if tmp.shape[1] == 3 and tmp[2].str.len().max() == 4 and tmp[1].astype(int).max() <= 12:
df.jdatnss = ['%s-%s-%s'%(i[2],i[1],i[0]) for i in df.jdatnss.str.split(r'/').sort_index()]
for i, j in enumerate(rang):
if j == max(rang) :
jj = df.shape[0]
else:
jj = rang[i+1]
df_imp = df[j:jj].copy()
print('INIT export data TO {0} ..... {1}/{2} ...... {3} sec'.format(tab_out, jj, df.shape[0], time_exec(start_time) ))
if 'geom' in df.columns and not df[~df['geom'].isna()].empty :
df_imp = df_imp.set_geometry('geom', drop=True, crs=crs)
df_imp.rename(columns={'geometry': 'geom'}, inplace=True)
df_imp.to_postgis(
name = tab_out,
con = engine_fon,
schema = schema_fon,
index = False,
if_exists = 'append',
geom_col = 'geom',
chunksize = chunk,
)
else:
df_imp.to_sql(
name = tab_out,
con = engine_fon,
schema = schema_fon,
index = False,
if_exists = 'append',
chunksize = chunk,
method = 'multi',
)
print('END export data TO {0} ........... {1} sec'.format(tab_out, time_exec(start_time) ))
def optimize_data_frame(df):
columns = df.columns
for col in columns:
# dtype = df[col].dtypes
# if dtype == 'int64' or dtype == 'int32':
len_col = len(df[col].unique())
if len_col <= df.shape[0]*0.8:
df[col] = df[col].astype('category')
return df
# Initiation des connexions bdd
engine_cad = create_engine('postgresql+psycopg2://{0}:{1}@{2}:{3}/{4}'.format(user_cad,pwd_cad,adr_cad,port_cad,base_cad), echo=False)
engine_fon = create_engine('postgresql+psycopg2://{0}:{1}@{2}:{3}/{4}'.format(user_fon,pwd_fon,adr_fon,port_fon,base_fon), echo=False)
con_cad = engine_cad.connect()
con_fon = engine_fon.connect()
################################
########## Main ##########
################################
if __name__ == "__main__":
################
# CORRECTION DUPLICATES TABLE_IN
################
if check_duplicates:
for DOUBLON in FIND_DOUBLON:
tab = DOUBLON['tab_in']
on_col = DOUBLON['on_col']
for col in on_col:
for dep in list_dep:
schema_in = dep + '_' + schema_cad
sql = '''
-- il existe des doublons en raison d'orthographes voisines :
-- recherche de ces doublons
SELECT DISTINCT '{0}' as insee_dep, dnuper, string_agg(DISTINCT {1},' / ') as orthographes_voisines
FROM "{2}".{3} GROUP BY dnuper HAVING count(DISTINCT {1}) > 1'''.format(dep, col, schema_in, tab)
df = pd.read_sql(
sql = sql,
con = engine_cad,
)
if df.empty:
print('No duplicate value dep {0} table {1} column {2} ====> next request'.format(dep, tab, col))
continue
for i, row in df.iterrows():
dnuper = row.dnuper
choix = row.orthographes_voisines.split(' / ')
choix = [i.strip() for i in choix]
Question = input("""Des orthographes voisines existent pour l'identifiant : {0}
dans la colonne : {1}.
Les valeurs voisines sont : {2}
Ecrire la mise à jour du champs {1} à enregistrer (c cancel) :""".format(dnuper,col, choix))
if Question.lower() == 'c' or Question.lower() == 'cancel':
continue
update = '''UPDATE "{0}".{1}
SET {2} = '{3}'
WHERE {2} like '{4}%'
AND dnuper = '{5}';'''.format(schema_in, tab, col, Question, "%' OR {} like '".format(col).join(map(str,choix)), dnuper)
try:
con_cad.execute(text(update))
print('''
Update OK !''')
except Exception as exept:
print('ERROR : {0}'.format(update))
print(exept)
sys.exit()
################
# TRUNCATE TABLE OUT
################
if not debug:
for i, DICT in enumerate(DICT_TAB):
tab_in = DICT_TAB[i]['table_in']
col_in = DICT_TAB[i]['columns_in']
ind_in = DICT_TAB[i]['index_tab']
tabs_out = DICT_TAB[i]['table_out']
for tab_out in reversed(tabs_out):
sql = "TRUNCATE TABLE {0}.{1} CASCADE".format(schema_fon, tab_out['name'])
print(sql)
con_fon.execute(sql)
################
# IMPORT IN TABLE OUT
################
for dep in list_dep:
schema_in = dep + '_' + schema_cad
print('''
INIT import data FROM {}
'''.format(schema_in))
for i, DICT in enumerate(DICT_TAB):
tab_in = DICT_TAB[i]['table_in']
col_in = DICT_TAB[i]['columns_in']
ind_in = DICT_TAB[i]['index_tab']
tabs_out = DICT_TAB[i]['table_out']
# Import data
print('''
INIT import data FROM {0}........... {1} sec'''.format(tab_in, time_exec(start_time) ))
tmp = pd.read_sql_table(
table_name = tab_in,
con = engine_cad,
schema = schema_in,
columns = col_in + [ind_in],
chunksize = chunk,
)
# Mise en forme des données
if chunk:
DF = pd.concat(tmp, ignore_index=True)
else:
DF = tmp.copy()
DF.drop_duplicates(inplace=True)
del tmp
DF.set_index(ind_in, inplace=True)
print('END import data ........... %s sec'%( time_exec(start_time) ))
for tab in tabs_out:
tab_out = tab['name']
dictio = tab['dict']
col_df = tab['columns_in']
col_ad = tab['columns_add']
get_geo = tab['geom']
drp_esc = tab['drop_escape']
unique = tab['unique']
join = tab['join']
print('INIT TABLE {0} ........... {1} sec'.format(tab_out, time_exec(start_time) ))
df = DF[DF.columns.intersection(col_df)].copy()
# Remplacement des espaces dans les chaines de caractères par des 0
df = replace_escape_by_0(df)
if drp_esc:
df_obj = df.select_dtypes(['object'])
df[df_obj.columns] = df_obj.apply(lambda x: x.str.strip())
if dictio :
df.rename(columns=dictio, inplace=True)
if join :
for j in join:
if j['bdd'] == 'in' :
df = join_data(df, j, schema_in)
if df.empty:
print('df EMPTY ====> next table')
continue
# Ajout des champs additionnels
if col_ad :
print('INIT addition columns ........... %s sec'%( time_exec(start_time) ))
for key in col_ad.keys():
if key in df.columns:
df[key + '_tmp'] = df[key].copy()
col_ad[key] = [x if x != key else key+'_tmp' for x in col_ad[key]]
aggreg = col_ad[key]
if aggreg :
df[key] = ''
for col in aggreg:
df[key] += df[col].fillna('')
else:
df[key] = aggreg
print('ADD column {0} : {1} ........... {2} sec'.format(key,aggreg, time_exec(start_time) ))
if tab_out == 'proprios%s'%sufx_nom_tab:
add = pd.DataFrame(data={'dnuper': ['%sY99999'%dep], 'ddenom': ['PROPRIETAIRES NON RENSEIGNES']})
df = pd.concat([df,add])
# JOINTURE
if join :
for j in join:
if j['bdd'] == 'out' :
df = join_data(df, j, schema_in)
if df.empty:
print('df EMPTY ====> next table')
continue
if unique:
df.drop_duplicates(unique['cols'], keep=unique['keep'], inplace=True)
# Conservation des champs utiles à l'insertion en bdd
name_col_out = engine_fon.dialect.get_columns(engine_fon, tab_out, schema=schema_fon)
name_col_out = [ sub['name'] for sub in name_col_out ]
if 'geom' in name_col_out and 'geom' not in df.columns:
name_col_out.remove('geom')
df = df[df.columns.intersection(name_col_out)]
####################
# Read geodataframe
# Dans le cas où un champs géometrique est nécessaire.
if get_geo:
get_geom_parcelle(df=df, get_geo=get_geo, schema=schema_in)
else:
export_data(df)
# del df
# Si insertion de données dans r_prop_cptprop,
# attribution d'un compte 'PROPRIETAIRES NON RENSEIGNES' au cptprop sans proprio
if tab_out == 'r_prop_cptprop%s'%sufx_nom_tab:
print('''ATTRIBUTION d'un compte 'PROPRIETAIRES NON RENSEIGNES' au cptprop sans proprio''')
df = pd.read_sql_table(
con = engine_fon,
table_name = 'cptprop%s'%sufx_nom_tab,
schema = schema_fon,
columns = ['dnupro'] )
tmp = pd.read_sql_table(
con = engine_fon,
table_name = 'r_prop_cptprop%s'%sufx_nom_tab,
schema = schema_fon,
columns = ['dnupro'] )
df = df[~df.dnupro.isin(tmp.dnupro)]
if df.empty:
print('TOUS les propriétaires sont renseignés ===> NEXT !')
continue
df['dnuper'] = '%sY99999'%dep
export_data(df)
del df
del DF
print('END transfert data FROM département {0} ........... {1} sec'.format(dep, time_exec(start_time) ))
print('END SCRIPT')