54 lines
1.1 KiB
Python
54 lines
1.1 KiB
Python
#!/usr/bin/env python
|
|
# -*- coding: UTF-8 -*-
|
|
#Nom : view_data.py
|
|
#Description : Test de connection en base et d'accès aux données
|
|
#Copyright : 2021, CEN 38
|
|
#Auteur : Colas Geier
|
|
|
|
|
|
from pycen import bdd
|
|
import pandas as pd
|
|
import geopandas as gpd
|
|
|
|
|
|
# Parametres
|
|
user = 'cen_admin'
|
|
pwd = '#CEN38@venir'
|
|
adr = '192.168.0.3'
|
|
base = 'bd_cen38'
|
|
|
|
# schema = 'ref_inpn_taxref'
|
|
# table = 'taxref_v11_liens'
|
|
# schema = 'sites'
|
|
# table = 'c_sites_zonages'
|
|
schema = 'zh'
|
|
table = 'cr_cen38_zh_medwet_v2021'
|
|
|
|
# Connexion bdd
|
|
bd = bdd.CEN(
|
|
user = user,
|
|
pwd = pwd,
|
|
adr = adr,
|
|
base = base
|
|
# schema = schema
|
|
)
|
|
|
|
# GET data
|
|
df = bd.get_table(
|
|
schema = schema,
|
|
table = table)
|
|
|
|
|
|
|
|
gdf['type_milieux'] = gdf.milieux.str.split(expand=True)[0]
|
|
gdf[gdf.milieux.str.contains('all',na=False)]
|
|
gdf[gdf.milieux.str.startswith('Eco',na=False)]
|
|
|
|
|
|
# from sqlalchemy import create_engine
|
|
# db_connection_url = "postgres://{0}:{1}@{2}:5432/{3}".format(user,pwd,adr,base)
|
|
# con = create_engine(db_connection_url)
|
|
# sql = "SELECT * FROM {0}.{1}".format(schema,table)
|
|
# df = gpd.read_postgis(sql, con)
|
|
|