2025-09-18 16:54:02 +02:00

2256 lines
116 KiB
Python

#!/usr/bin/env python3
# -*- coding: UTF-8 -*-
#Nom : : recup_zh.py
#Description :
#Copyright : 2021, CEN38
#Auteur : Colas Geier
#Version : 1.0
import re
import pandas as pd
import pandas_access as mdb
import numpy as np
from sqlalchemy.sql.expression import column
from pycen import bdd
from sqlalchemy import create_engine
from geoalchemy2 import Geometry
isin_bdd = True
# Parametres bdd IN
user = 'cen_admin'
pwd = '#CEN38@venir'
adr = '192.168.0.189'
base = 'bd-cen-38'
schema = 'zh'
table = 'cr_cen38_zh_medwet_v2021'
con = create_engine('postgresql+psycopg2://{0}:{1}@{2}/{3}'.format(user,pwd,adr,base), echo=False)
bd = bdd.CEN(
user = user,
pwd = pwd,
adr = adr,
base = base
# schema = schema
)
# Parametres bdd OUT
user_zh = 'postgres'
pwd_zh = 'tutu'
adr_zh = '192.168.60.10'
base_zh = 'bd_cen'
con_zh = create_engine('postgresql+psycopg2://{0}:{1}@{2}/{3}'.format(user_zh,pwd_zh,adr_zh,base_zh), echo=False)
# Read MS access database
db_file1 = '/home/colas/Documents/5_BDD/ZONES_HUMIDES/MEDWET_v1.mdb'
db_file2 = '/home/colas/Documents/5_BDD/ZONES_HUMIDES/MEDWET_V2.mdb'
df_med1 = mdb.read_table(db_file1, "SITEINFO")
df_med2 = mdb.read_table(db_file2, "SITEINFO")
# FILE = db_file2
# for tab in mdb.list_tables(FILE):
# if tab not in ['SIG', 'List', 'Switchboard', 'Items'] and not tab.startswith(('DicGen','DIcGen')):
# # df = mdb.read_table(FILE, tab, keep_default_na=False,skipinitialspace=True)
# df = mdb.read_table(FILE, tab)
# if 'SITE_COD' in df.columns or 'SIT_COD' in df.columns:
# print(tab)
# FILE = db_file2
# for tab in mdb.list_tables(FILE):
# if tab not in ['SIG', 'List', 'Switchboard', 'Items'] and not tab.startswith(('DicGen','DIcGen')):
# # df = mdb.read_table(FILE, tab, keep_default_na=False,skipinitialspace=True)
# df = mdb.read_table(FILE, tab)
# if 'ORG' in df.columns:
# print(tab)
df = bd.get_table(
schema = schema,
table = table)
df.sort_values('site_code', inplace=True)
df.auteur_fiche.fillna('Inconnu', inplace=True)
df[['auteur_fiche','auteur_fiche_remarque']] = df[['auteur_fiche','auteur_fiche_remarque']].replace(
['Biron N.','BIRON N\.','Balmain C.','Feuvrier B.','Souvignet N.','Billard G.','BELLUT', 'C. Balmain','E. JOURDAN','E. Jordan','Juton M.','P. Bellut', 'Folgar H.',],
['BIRON Nicolas','BIRON Nicolas','BALMAIN Céline','FEUVRIER Benoit','SOUVIGNET Nicolas','BILLARD Gilbert','BELLUT P.','BALMAIN Céline','JOURDAN Elise','JOURDAN Elise','JUTON Mathieu','BELLUT P.','FOGLAR Hélène'],
regex=True)
# Récupération des structures
df_structure = pd.DataFrame(
df['organisme_auteur'].drop_duplicates(), )
df_structure.rename(columns={'organisme_auteur':'nom'}, inplace=True)
# df_structure.drop(
# labels=[
# # 1092,748,1088,
# 17],
# axis=0,
# inplace=True)
df_structure['nom_autres'] = None
df_structure.loc[df_structure.nom == 'Acer campestre', 'nom_autres'] = 'ACER CAMPESTRE'
df_structure.loc[df_structure.nom == 'FRAPNA Isère', 'nom_autres'] = 'Asso. FRAPNA'
df_structure.loc[df_structure.nom == 'DRAC NATURE', 'nom_autres'] = 'Asso. Drac Nature'
df_structure.loc[df_structure.nom == 'Comité Gère vivante', 'nom_autres'] = 'Asso. GERE VIVANTE'
df_structure.nom.fillna('Inconnu', inplace=True)
df_structure.reset_index(inplace=True, drop=True)
# Envoie des structures en bdd
if not isin_bdd:
df_structure['nom'].to_sql(
name='organisme',
con = con_zh,
schema='personnes',
index=True,
index_label='id',
if_exists='append',
)
print("INSERT ... ok !")
# Correction des structures dans le df global
df.organisme_auteur.fillna('Inconnu', inplace=True)
for d,j in df_structure[~df_structure.nom_autres.isna()].iterrows():
df.loc[df.organisme_auteur==j.nom_autres, 'organisme_auteur'] = j.nom
# Récupération des personnes
df_pers = df[['auteur_fiche', 'organisme_auteur']].drop_duplicates()
df_pers.auteur_fiche.fillna('Inconnu', inplace=True)
tmp = [i.split('&') for i in df_pers['auteur_fiche'].dropna().unique() ]
lst_pers = [item for sublist in tmp for item in sublist]
tmp = pd.DataFrame(data=lst_pers, columns=['nom_prenom'])
tmp['nom_prenom'] = tmp.nom_prenom.str.strip()
tmp[['nom','prenom','autre']] = tmp['nom_prenom'].str.split(' ', 2, expand=True)
for i,j in tmp[~tmp.autre.isna()].iterrows():
tmp.loc[tmp.nom==j.nom, 'nom'] = j.nom + ' ' + j.prenom
tmp.loc[tmp.autre==j.autre, 'prenom'] = j.autre
tmp.drop(columns=['nom_prenom', 'autre'], inplace=True)
tmp['organisme'] = None
for nom in tmp.nom:
orga = df_pers.loc[df_pers.auteur_fiche.str.contains(nom),'organisme_auteur']
orga = orga.unique()
tmp.loc[tmp.nom == nom,'organisme'] = orga[0]
tmp['id_organisme'] = tmp['organisme']
tmp['id_organisme'] = tmp['id_organisme'].replace(df_structure.nom.to_list(),df_structure.index.to_list())
tmp.nom = tmp.nom.str.upper()
tmp.drop_duplicates(inplace=True)
df_pers = tmp
df_pers.drop(columns='organisme', inplace=True)
df_pers.reset_index(inplace=True, drop=True)
# Envoie des personnes en bdd
if not isin_bdd:
df_pers.to_sql(
name='personne',
con = con_zh,
schema='personnes',
index=True,
index_label='id',
if_exists='append',
)
print("INSERT ... ok !")
# Correction des personnes dans le df global
df_pers = pd.read_sql_table(
table_name='personne',
con = con_zh,
schema='personnes',
index_col='id',
)
# df.auteur_fiche.fillna('Inconnu', inplace=True)
# df[['auteur_fiche','auteur_fiche_remarque']] = df[['auteur_fiche','auteur_fiche_remarque']].replace(
# ['Biron N.','Balmain C.','Feuvrier B.','Souvignet N.','Billard G.','BELLUT', 'C. Balmain','E. JOURDAN','E. Jordan','Juton M.','P. Bellut' ],
# ['BIRON Nicolas','BALMAIN Céline','FEUVRIER Benoit','SOUVIGNET Nicolas','BILLARD Gilbert','BELLUT P.','BALMAIN Céline','JOURDAN Elise','JOURDAN Elise','JUTON Mathieu','BELLUT P.'],
# regex=True)
df_pers['nom_prenom'] = df_pers.nom.str[0] + df_pers.nom.str[1:].str.lower() + ' ' + df_pers.prenom
for pers in df_pers.nom_prenom.dropna():
val = df_pers[df_pers.nom_prenom == pers].index[0]
val = str(val)
df.auteur_fiche = df.auteur_fiche.str.replace(pers,val, regex=True)
df_pers['nom_prenom'] = df_pers.nom + ' ' + df_pers.prenom
for pers in df_pers.nom_prenom.dropna():
val = df_pers[df_pers.nom_prenom == pers].index[0]
val = str(val)
df.auteur_fiche = df.auteur_fiche.str.replace(pers,val, regex=False)
df.auteur_fiche.replace(df_pers.nom.to_list(),df_pers.index.to_list(), inplace=True)
NOM = df_pers.nom.str[0] + df_pers.nom.str[1:].str.lower()
df.auteur_fiche.replace(NOM.to_list(),NOM.index.to_list(), inplace=True)
df.loc[df.auteur_fiche == 'SETIS Groupe Degaud', 'auteur_fiche'] = df_pers.loc[df_pers.prenom == 'Degaud'].index[0]
# Récupération des sites
df_site = df[['site_code', 'date_init', 'name_zone', 'auteur_fiche', 'typo_sdage', ]]
df_site = df_site.rename(columns={
'site_code': 'id',
'date_init': 'date_deb',
'name_zone': 'nom',
'auteur_fiche': 'id_auteur',
'typo_sdage': 'id_typo_sdage'
})
df_site.sort_values('date_deb', inplace=True)
df_site.reset_index(inplace=True, drop=True)
typ_sdage = pd.read_sql_table(
table_name = 'typo_sdage',
con = con_zh,
schema = 'sites',
index_col = 'id',
)
typ_milieu = pd.read_sql_table(
table_name = 'type_milieu',
con = con_zh,
schema = 'sites',
index_col = 'id',
)
typ_site = pd.read_sql_table(
table_name = 'type_site',
con = con_zh,
schema = 'sites',
index_col = 'id',
)
df_site.id_typo_sdage.replace(typ_sdage.nom.str.lower().to_list(),typ_sdage.index.to_list(), inplace=True)
df_site.id_typo_sdage.fillna(typ_sdage[typ_sdage.nom.str.lower() == 'inconnu'].index[0], inplace=True)
df_site.loc[df_site.id_typo_sdage == "bordures de cours d'eau", 'id_typo_sdage'] = typ_sdage[typ_sdage.nom.str.lower().str.contains("cours d'eau")].index[0]
df_site.loc[df_site.id_typo_sdage == "petits plans d'eau et bordures de plans d'eau", 'id_typo_sdage'] = typ_sdage[typ_sdage.nom.str.lower().str.contains("plans d'eau")].index[0]
df_site.loc[df_site.id_typo_sdage == 'zones humides de bas-fond en tête de bassin versant', 'id_typo_sdage'] = typ_sdage[typ_sdage.nom.str.lower().str.contains("bas-fond")].index[0]
df_site.loc[df_site.id_typo_sdage == 'plaines alluviales', 'id_typo_sdage'] = typ_sdage[typ_sdage.nom.str.lower().str.contains("plaines alluviales")].index[0]
df_site['id_type_milieu'] = typ_milieu[typ_milieu.nom_court.str.contains('humides')].index[0]
df_site['id_type_site'] = typ_site[typ_site.nom == 'N.D.'].index[0]
df_site.set_index('id', inplace=True)
df_site.date_deb.fillna('0001-01-01', inplace=True)
df_site.nom.fillna('Inconnu', inplace=True)
# Envoie des sites en bdd
if not isin_bdd:
df_site.to_sql(
name='sites',
con = con_zh,
schema='sites',
index=True,
index_label='id',
if_exists='append',
)
print("INSERT ... ok !")
# Récupération des géometries
df_geomsite = df[['site_code', 'geom', 'date_der_modif', 'link_pdf', 'fonction_majeur', 'interet_patri', 'bilan_menaces', 'orient_act', 'usages_process_natu_comm' ]]
df_geomsite = df_geomsite.rename(columns={
'site_code': 'id_site',
'date_der_modif': 'date',
'fonction_majeur': 'rmq_fct_majeur',
'interet_patri': 'rmq_interet_patri',
'bilan_menaces': 'rmq_bilan_menace',
'orient_act': 'rmq_orient_act',
'usages_process_natu_comm': 'rmq_usage_process'
})
df_geomsite = df_geomsite.merge(df_site[['id_auteur']].reset_index(), left_on='id_site', right_on='id')
df_geomsite.drop(columns=['id'], inplace=True)
df_geomsite.date.fillna('0001-01-01', inplace=True)
df_geomsite.reset_index(inplace=True, drop=True)
# Envoie des géometries en bdd
if not isin_bdd:
df_geomsite.to_postgis(
name='r_sites_geom',
con = con_zh,
schema='sites',
index=True,
index_label='id',
if_exists='append',
geom_col='geom'
)
print("INSERT ... ok !")
df_rgsite = df_geomsite[['id_site']]
df_rgsite.index.name = 'id'
df_rgsite.reset_index(inplace=True)
# Récupération des types de connexions
df_typconex = df[['connex_type']]
df_typconex = df_typconex.rename(columns={
'connex_type': 'nom'
})
df_typconex.dropna(inplace=True)
df_typconex = pd.DataFrame(df_typconex.nom.unique(), columns=['nom'])
df_typconex = pd.concat(
[ pd.DataFrame(['inconnu'], columns=['nom']),df_typconex ],
ignore_index=True)
df_typconex['nom'] = df_typconex.nom.str[0].str.upper() + df_typconex.nom.str[1:]
# Envoie des types de connexions en bdd
if not isin_bdd:
df_typconex.to_sql(
name='param_type_connect',
con = con_zh,
schema='zones_humides',
index=True,
index_label='id',
if_exists='append',
)
print("INSERT ... ok !")
# Récupération des relations sites / types de connexions
df_Rtypconex = df[['site_code','connex_type']]
df_Rtypconex = pd.merge(df_Rtypconex, df_rgsite, left_on='site_code', right_on='id_site')
df_Rtypconex = df_Rtypconex.rename(columns={
'id': 'id_geom_site',
'connex_type': 'id_param_connect'
})
df_Rtypconex.id_param_connect.fillna('inconnu', inplace=True)
df_Rtypconex.id_param_connect.replace(df_typconex.nom.str.lower().to_list(),df_typconex.index.to_list(), inplace=True)
df_Rtypconex.drop(columns=['site_code', 'id_site'], inplace=True)
# Envoie des relations sites / types de connexions
if not isin_bdd:
df_Rtypconex.to_sql(
name='r_site_type_connect',
con = con_zh,
schema='zones_humides',
index=True,
index_label='id',
if_exists='append',
)
print("INSERT ... ok !")
# Incrémentation des types de paramettres fctEcoSocioPatri
d = {
'nom': ['Fonctions hydroligiques', 'Fonctions biologiques', 'Valeurs socio-économiques', 'Interêt patrimonial',],
'nom_court': ['fct_hydro', 'fct_bio', 'val_socioEco', 'int_patri']}
df_typFct = pd.DataFrame(data=d)
if not isin_bdd:
df_typFct.to_sql(
name='type_param_fct',
con = con_zh,
schema='zones_humides',
index=True,
index_label='id',
if_exists='append',
)
print("INSERT ... ok !")
# Récupération des fct Hydro, Bio, Socio-eco, Patri
columns_fct = ['fct_bio', 'val_socio_eco', 'int_patri', 'fct_hydro']
df_rSiteFct = df[['site_code'] + columns_fct ]
df_rSiteFct = pd.merge(df_rSiteFct, df_rgsite, left_on='site_code', right_on='id_site')
df_rSiteFct = df_rSiteFct.rename(columns={
'id': 'id_geom_site',
})
df_rSiteFct.drop(columns=['site_code', 'id_site'], inplace=True)
df_rSiteFct.index.name = 'id'
# df_rSiteFct.dropna(axis=0,subset=columns_fct, inplace=True)
lst_df = {}
for col in columns_fct:
print(col)
lst_df[col] = df_rSiteFct[['id_geom_site', col]]
d = lst_df[col][col].str.split('//').apply(pd.Series).stack()
d = pd.DataFrame(d, columns=[col])
d.index.name = 'id'
del lst_df[col][col]
lst_df[col] = lst_df[col].merge(d, on='id',how='left')
lst_df[col][[col, col+'_rmq']] = lst_df[col][col].str.split('; Justification :', expand=True)
lst_df[col][col] = lst_df[col][col].str.replace('Critère :','')
lst_df[col][col+'_rmq'] = lst_df[col][col+'_rmq'].str.replace('Justification :','')
lst_df[col][col] = lst_df[col][col].str.strip()
lst_df[col][col+'_rmq'] = lst_df[col][col+'_rmq'].str.strip()
lst_df[col].dropna(subset=[col], inplace=True)
# Isolement des paramètres des fct Hydro, Bio, Socio-eco, Patri
df_paramFct = pd.DataFrame(columns=['nom', 'type'])
for col in columns_fct:
# x = lst_df[col][col].drop_duplicates().dropna()
# y = pd.Series([col]*len(x))
x = lst_df[col][col].drop_duplicates().dropna().tolist()
y = [col]*len(x)
xy = {'nom': x, 'type': y}
xy = pd.DataFrame(data=xy)
df_paramFct = df_paramFct.append(xy, ignore_index=True)
# Incrémentation des paramètres des fct Hydro, Bio, Socio-eco, Patri
df_paramFct['id_type'] = df_paramFct.type.copy()
df_paramFct.id_type.replace('val_socio_eco','val_socioeco', inplace=True)
df_paramFct.id_type.replace(df_typFct.nom_court.str.lower().to_list(),df_typFct.index.to_list(), inplace=True)
del df_paramFct['type']
df_paramFct[['nom','description']] = df_paramFct.nom.str.split('(', n=1, expand=True)
df_paramFct['description'] = df_paramFct['description'].str.replace(';',',')
df_paramFct['description'] = df_paramFct['description'].str.strip(')')
df_paramFct['description'] = df_paramFct['description'].replace('),',':')
df_paramFct['nom'] = df_paramFct['nom'].str.strip()
if not isin_bdd:
df_paramFct.to_sql(
name='param_fct_eco_socio_patri',
con = con_zh,
schema='zones_humides',
index=True,
index_label='id',
if_exists='append',
)
print("INSERT ... ok !")
# Incrémentation des relations sites / paramètres des fct Hydro, Bio, Socio-eco, Patri
df_paramFct.id_type.replace(df_typFct.index.to_list(), df_typFct.nom_court.str.lower().to_list(), inplace=True)
for col in columns_fct:
lst_df[col].rename(columns={
col : 'id_fct',
col+'_rmq' : 'description'
}, inplace=True)
if col == 'int_patri':
lst_df[col]['quantite'] = [
sum(map(int, filter(str.isdigit, row.split())))
if isinstance(row,str) else None
for row in lst_df[col]['description'] ]
for col in columns_fct:
id_type = col
if col == 'val_socio_eco':
id_type = 'val_socioeco'
tmp = df_paramFct[df_paramFct.id_type==id_type]
for i,row in tmp.iterrows():
lst_df[col].loc[lst_df[col]['id_fct'].str.contains(row.nom, na=False), 'id_fct'] = row.name
df_RsiteFct = pd.DataFrame()
for col in columns_fct:
df_RsiteFct = pd.concat([df_RsiteFct, lst_df[col]])
df_RsiteFct.sort_values('id_geom_site')
df_RsiteFct.reset_index(drop=True,inplace=True)
df_RsiteFct['description'] = df_RsiteFct['description'].replace('prioriatire','prioritaire', regex=True)
if not isin_bdd:
df_RsiteFct.to_sql(
name='r_site_fctecosociopatri',
con = con_zh,
schema='zones_humides',
index=True,
index_label='id',
if_exists='append',
)
print("INSERT ... ok !")
# Récupération des critères de délimitation
df_critDelm = df[['site_code','criete_delimit', 'criete_delimit_rmq']]
df_critDelm = pd.merge(df_critDelm, df_rgsite, left_on='site_code', right_on='id_site')
df_critDelm.rename(columns={
'id': 'id_geom_site',
}, inplace=True)
df_critDelm.drop(columns=['site_code', 'id_site'], inplace=True)
df_critDelm.index.name = 'id'
df_critDelm.dropna(subset=['criete_delimit'], inplace=True)
d = df_critDelm['criete_delimit'].str.split('//').apply(pd.Series).stack()
d = pd.DataFrame(d, columns=['criete_delimit'])
d.index.name = 'id'
del df_critDelm['criete_delimit']
df_critDelm = df_critDelm.merge(d, on='id',how='left')
df_critDelm['criete_delimit'] = df_critDelm['criete_delimit'].str.replace('critère de délimitation ZH : ','')
df2_critDelm = df_rgsite[['id']].copy()
df2_critDelm.rename(columns={
'id': 'id_geom_site',
}, inplace=True)
df2_critDelm['criete_delimit'] = 'Non déterminé'
df_critDelm = pd.concat([df_critDelm, df2_critDelm])
# Récupération des paramètres de délimitation de fct
# df_PcritDelm = pd.DataFrame(columns=['id_type','nom_court','nom', 'description'] )
# df_PcritDelm = df_PcritDelm.append(df_critDelm[['criete_delimit']].drop_duplicates())
# df_PcritDelm[['nom', 'description']] = df_PcritDelm.criete_delimit.str.split('(', expand=True)
# del df_PcritDelm['criete_delimit']
# df_PcritDelm['nom'] = df_PcritDelm['nom'].str.strip()
# df_PcritDelm['description'] = df_PcritDelm['description'].str.strip(')')
# df_PcritDelm['id_type'] = 0
# df_PcritDelm.drop_duplicates(inplace=True)
# df_PcritDelm.reset_index(drop=True, inplace=True)
# # Incrémentation des paramètres de délimitation de fct
# if not isin_bdd:
# df_PcritDelm.to_sql(
# name='param_delim_fct',
# con = con_zh,
# schema='zones_humides',
# index=True,
# index_label='id',
# if_exists='append',
# )
# print("INSERT ... ok !")
df_PcritDelm = pd.read_sql_table(
table_name = 'param_delim_fct',
con = con_zh,
schema = 'zones_humides',
index_col = 'id',
)
# Récupération des relations sites / paramètres de délimitation de fct
for i,row in df_PcritDelm.iterrows():
df_critDelm.loc[df_critDelm['criete_delimit'].astype(str).str.contains(row.nom, na=False), 'criete_delimit'] = row.name
df_critDelm.rename(columns={
'criete_delimit' : 'id_crit_delim',
'criete_delimit_rmq': 'description'
}, inplace=True)
# Incrémentation des relations sites / paramètres de délimitation de fct
df_critDelm.reset_index(drop=True,inplace=True)
if not isin_bdd:
df_critDelm.to_sql(
name='r_site_critdelim',
con = con_zh,
schema='zones_humides',
index=True,
index_label='id',
if_exists='append',
)
print("INSERT ... ok !")
# Récupération des codes Corine Biotope
df_corbio = df[['site_code', 'corine_biotope']]
df_corbio = pd.merge(df_corbio, df_rgsite, left_on='site_code', right_on='id_site')
df_corbio = df_corbio.rename(columns={
'id': 'id_geom_site',
})
df_corbio.drop(columns=['site_code', 'id_site'], inplace=True)
df_corbio.index.name = 'id'
df_corbio.dropna(subset=['corine_biotope'], inplace=True)
d = df_corbio['corine_biotope'].str.split(' ; ').apply(pd.Series).stack()
d = pd.DataFrame(d, columns=['corine_biotope'])
d.index.name = 'id'
del df_corbio['corine_biotope']
df_corbio = df_corbio.merge(d, on='id',how='left')
df_corbio[['id_cb', 'libelle']] = df_corbio['corine_biotope'].str.split(' : ', expand=True)
df_corbio = df_corbio[['id_geom_site', 'id_cb']]
df_corbio.reset_index(inplace=True, drop=True)
# Incrémentation des relations sites / code corine biotope
if not isin_bdd:
df_corbio.to_sql(
name='r_site_habitat',
con = con_zh,
schema='zones_humides',
index=True,
index_label='id',
if_exists='append',
)
print("INSERT ... ok !")
# Récupération des éléments de submersion
df_sub = df[['site_code','regime_hydrique_freq','regime_hydrique_etendue', 'regime_hydrique_orig']]
df_sub = pd.merge(df_sub, df_rgsite, left_on='site_code', right_on='id_site')
df_sub = df_sub.rename(columns={
'id': 'id_geom_site',
})
df_sub.drop(columns=['site_code', 'id_site'], inplace=True)
df_sub.index.name = 'id'
df_sub.dropna(subset=['regime_hydrique_freq','regime_hydrique_etendue', 'regime_hydrique_orig'], inplace=True, how='all')
df_typePsub = pd.read_sql_table(
table_name = 'type_param_sub',
con = con_zh,
schema = 'zones_humides',
index_col = 'id',
)
# Récupération des critères de submersion
df_paramSub = df_sub[['regime_hydrique_freq','regime_hydrique_etendue']].stack()
df_paramSub = df_paramSub.reset_index(level=1)
df_paramSub.set_axis(['id_type','nom'], axis=1, inplace=True)
df_paramSub = df_paramSub.drop_duplicates().sort_values('id_type')
df_paramSub.id_type.replace(['regime_hydrique_freq', 'regime_hydrique_etendue'],[0,1], inplace=True)
df_paramSub.reset_index(inplace=True, drop=True)
df_paramSub2 = pd.DataFrame({
'id_type' : [0, 1],
'nom' : ['Inconnu', 'Inconnu']
})
df_paramSub = df_paramSub.append(df_paramSub2, ignore_index=True)
# Incrémentation des critères de submersion
if not isin_bdd:
df_paramSub.to_sql(
name='param_sub',
con = con_zh,
schema='zones_humides',
index=True,
index_label='id',
if_exists='append',
)
print("INSERT ... ok !")
# Récupération des relations sites / critères de submersion
df_sub.rename(
columns={'regime_hydrique_orig': 'id_origsub', 'regime_hydrique_etendue': 'id_etendsub', 'regime_hydrique_freq': 'id_freqsub'},
inplace=True)
df_sub.replace(df_paramSub.nom.to_list(), df_paramSub.index.to_list(), inplace=True, regex=True)
df_sub.id_freqsub.fillna(6, inplace=True)
df_sub.id_etendsub.fillna(7, inplace=True)
df_sub.reset_index(inplace=True, drop=True)
# Incrémentation des relations sites / critères de submersion
if not isin_bdd:
df_sub.to_sql(
name='r_site_sub',
con = con_zh,
schema='zones_humides',
index=True,
index_label='id',
if_exists='append',
)
print("INSERT ... ok !")
# Récupération des régimes hydriques
df_hydri0 = df[['site_code','regime_hydrique_entree','regime_hydrique_sortie']]
df_hydri0 = pd.merge(df_hydri0, df_rgsite, left_on='site_code', right_on='id_site')
df_hydri0 = df_hydri0.rename(columns={
'id': 'id_geom_site',
})
df_hydri0.drop(columns=['site_code', 'id_site'], inplace=True)
df_hydri0.index.name = 'id'
df_hydri0.dropna(subset=['regime_hydrique_entree','regime_hydrique_sortie'], inplace=True, how='all')
# Mise à plat des entrées d'eau
df_hydriE = df_hydri0[['id_geom_site','regime_hydrique_entree']].reset_index(drop=True)
df_hydriE.index.name = 'id'
d= df_hydriE['regime_hydrique_entree'].str.split(' // ').apply(pd.Series).stack()
d = pd.DataFrame(d, columns=['regime_hydrique_entree'])
d.index.name = 'id'
del df_hydriE['regime_hydrique_entree']
df_hydriE = df_hydriE.merge(d, on='id',how='left')
df_hydriE.rename(columns={'regime_hydrique_entree': 'id_reg_hydro'}, inplace=True)
df_hydriE.id_reg_hydro.replace("Entrée d'eau : ", '', inplace=True, regex=True)
df_hydriE[['id_reg_hydro', 'id_permanance']] = df_hydriE['id_reg_hydro'].str.split(' ; Permanence : ', expand=True)
df_hydriE[['id_reg_hydro','id_toponymie']] = df_hydriE['id_reg_hydro'].str.split(' ; Toponymie : ', expand=True)
df_hydriE = df_hydriE.reset_index(drop=True)
df_hydriE.index.name = 'id'
d = df_hydriE[df_hydriE.id_toponymie.str.contains(';',na=False)]
d = d.merge(
pd.DataFrame({'toponymie':d['id_toponymie'].str.split(' ; ').apply(pd.Series).stack()}),
on='id',how='left') \
.drop(columns=['id_toponymie']) \
.rename(columns={'toponymie':'id_toponymie'})
# df_hydriE = pd.concat([
# df_hydriE[~df_hydriE.index.isin(d.index)],
# d ]).sort_values('id_geom_site').reset_index(drop=True)
# d = d.merge(
# pd.DataFrame({'toponymie':d['id_toponymie'].str.split(', ').apply(pd.Series).stack()}),
# on='id',how='left') \
# .drop(columns=['id_toponymie']) \
# .rename(columns={'toponymie':'id_toponymie'}) \
# .drop_duplicates()
# d = d.merge(
# pd.DataFrame({'toponymie':d['id_toponymie'].str.split(' ou ').apply(pd.Series).stack()}),
# on='id',how='left') \
# .drop(columns=['id_toponymie']) \
# .rename(columns={'toponymie':'id_toponymie'}) \
# .drop_duplicates()
# df_hydriE[['id_toponymie', 'id_permanance']] = df_hydriE['id_toponymie'].str.split(' ; Permanence : ', expand=True)
# d = df_hydriE['id_toponymie'].str.split(' ; ').apply(pd.Series).stack()
# d = pd.DataFrame(d, columns=['id_toponymie'])
# d.index.name = 'id'
# del df_hydriE['id_toponymie']
# df_hydriE = df_hydriE.merge(d, on='id',how='left')
df_hydriE['entree_sortie'] = 0
# Mise à plat des sorties d'eau
df_hydriS = df_hydri0[['id_geom_site','regime_hydrique_sortie']].reset_index(drop=True)
df_hydriS.index.name = 'id'
d = df_hydriS['regime_hydrique_sortie'].str.split(' // ').apply(pd.Series).stack()
d = pd.DataFrame(d, columns=['regime_hydrique_sortie'])
d.index.name = 'id'
del df_hydriS['regime_hydrique_sortie']
df_hydriS = df_hydriS.merge(d, on='id',how='left')
df_hydriS.rename(columns={'regime_hydrique_sortie': 'id_reg_hydro'}, inplace=True)
df_hydriS.id_reg_hydro.replace("Sortie d'eau : ", '', inplace=True, regex=True)
df_hydriS[['id_reg_hydro', 'id_permanance']] = df_hydriS['id_reg_hydro'].str.split(' ; Permanence : ', expand=True)
df_hydriS[['id_reg_hydro','id_toponymie']] = df_hydriS['id_reg_hydro'].str.split(' ; Toponymie : ', expand=True)
# df_hydriS[['id_toponymie', 'id_permanance']] = df_hydriS['id_toponymie'].str.split(' ; Permanence : ', expand=True)
# d = df_hydriS['id_toponymie'].str.split(' ; ').apply(pd.Series).stack()
# d = pd.DataFrame(d, columns=['id_toponymie'])
# d.index.name = 'id'
# del df_hydriS['id_toponymie']
# df_hydriS = df_hydriS.merge(d, on='id',how='left')
df_hydriS['entree_sortie'] = 1
# Regroupement des régimes hydriques
df_hydri = pd.concat([df_hydriE, df_hydriS], ignore_index=True)
for col in df_hydri.columns:
if not col in ['id_geom_site', 'entree_sortie']:
df_hydri[col] = df_hydri[col].str.strip()
# df_hydri.drop_duplicates(inplace=True)
# df_hydri.id_toponymie.replace('', None, inplace=True, regex=True)
df_hydri = pd.merge(df_hydri, df_rgsite, left_on='id_geom_site', right_on='id')
# Récupération des critères de régimes hydriques
df_Preghydro = df_hydri[['id_reg_hydro']].drop_duplicates()
df_Preghydro.dropna(inplace=True)
df_Preghydro['nom'] = df_Preghydro.id_reg_hydro.str[0].str.upper() + df_Preghydro.id_reg_hydro.str[1:].str.lower()
del df_Preghydro['id_reg_hydro']
df_Preghydro.sort_values('nom', inplace=True)
df_Preghydro.reset_index(inplace=True, drop=True)
# Incrémentation des critères de régimes hydriques
if not isin_bdd:
df_Preghydro.to_sql(
name='param_reg_hydro',
con = con_zh,
schema='zones_humides',
index=True,
index_label='id',
if_exists='append',
)
print("INSERT ... ok !")
# Récupération des critères de permanances hydriques
df_PpermHydro = df_hydri[['id_permanance']].drop_duplicates()
df_PpermHydro.columns = ['nom']
df_PpermHydro.nom = df_PpermHydro.nom.replace([''],[None])
df_PpermHydro.dropna(inplace=True)
df_PpermHydro.sort_values('nom', inplace=True)
df_PpermHydro.reset_index(inplace=True, drop=True)
df_PpermHydro.loc[5] = 'inconnu'
# Incrémentation des critères de permanances hydriques
if not isin_bdd:
df_PpermHydro.to_sql(
name='param_permanence',
con = con_zh,
schema='zones_humides',
index=True,
index_label='id',
if_exists='append',
)
print("INSERT ... ok !")
# Récupération des Toponymie
df_hydri[['id_toponymie']] = df_hydri[['id_toponymie']] \
.replace(
['ruisseau','canal','canaux','torrent','catelan','\nRuisseau de la Grande Valloire',', …'],
['Ruisseau','Canal','Canal','Torrent','Catelan','',''],
regex=True) \
.replace(['Ruisseaux'],['Ruisseau'], regex=True)
# df_topony = df_hydri[['id_toponymie']] \
# .replace([''],[None]) \
# .dropna() \
# .drop_duplicates()
# df_tron = pd.read_sql_table(
# table_name='troncon_hydro',
# con=con_zh,
# schema='ref_hydro',
# columns=['id', 'nom'],
# ).dropna()
# df_topony[df_topony.id_toponymie.isin(df_tron.nom)]
# df_topony[~df_topony.id_toponymie.isin(df_tron.nom)].id_toponymie.unique()
df_RegHydro = df_hydri.drop(columns='id').copy()
df_RegHydro.rename(columns={
'id_toponymie':'rmq_toponymie',
'id_permanance':'id_permanence',
'entree_sortie': 'in_out'}, inplace=True)
df_RegHydro.id_reg_hydro = df_RegHydro.id_reg_hydro.str[0].str.upper() + df_RegHydro.id_reg_hydro.str[1:].str.lower()
df_RegHydro.dropna(subset=['id_reg_hydro'],inplace=True)
df_RegHydro.id_permanence.fillna('inconnu', inplace=True)
d1 = dict(df_Preghydro.nom)
d2 = dict(df_PpermHydro.nom)
d1 = {v: str(k) for k, v in d1.items()}
d2 = {v: str(k) for k, v in d2.items()}
dic = {
'id_reg_hydro': d1,
'id_permanence': {'':None, **d2}
}
df_RegHydro.in_out = ~df_RegHydro.in_out.astype(bool)
df_RegHydro = df_RegHydro.replace(dic) \
.drop(columns='id_site') \
.reset_index(drop=True)
# Incrémentation des régimes hydriques
if not isin_bdd:
df_RegHydro.to_sql(
name='r_site_reghydro',
con = con_zh,
schema='zones_humides',
index=False,
# index_label='id',
if_exists='append',
)
print("INSERT ... ok !")
# Récupération des usages et process
df_Ppostion = pd.read_sql_table(
table_name = 'param_position',
con = con_zh,
schema = 'zones_humides',
index_col = 'id',
)
df.usages_process_natu = df.usages_process_natu.replace(
['avce', 'Entretine', 'Espèce invasive','espèce invasive'],
['avec', 'Entretien', 'Espèces invasives','espèces invasives'], regex=True)
df_Rprocess = df[['site_code', 'usages_process_natu']].copy()
df_Rprocess = pd.merge(df_Rprocess, df_rgsite, left_on='site_code', right_on='id_site')
df_Rprocess = df_Rprocess.rename(columns={
'id': 'id_geom_site',
})
df_Rprocess.drop(columns=['site_code'], inplace=True)
# df_Rprocess.dropna(subset=['usages_process_natu'], inplace=True)
df_Rprocess.reset_index(drop=True, inplace=True)
df_Rprocess.index.name = 'id'
d = df_Rprocess['usages_process_natu'].str.split('//', expand=True).stack()
d = pd.DataFrame(d, columns=['activ_humaine'])
d.index.name = 'id'
df_Rprocess = df_Rprocess \
.drop(columns=['usages_process_natu']) \
.merge(d, on='id', how='left')
df_Rprocess[['activ_humaine', 'position']] = df_Rprocess['activ_humaine'].str.split(', Localisation :', expand=True)
df_Rprocess[['activ_humaine', 'rmq_activ_hum']] = df_Rprocess['activ_humaine'].str.split(pat=' \(Remarques :', expand=True)
df_Rprocess['rmq_activ_hum'] = df_Rprocess['rmq_activ_hum'].str.replace(' \)','', regex=True).str.strip()
df_Rprocess['rmq_activ_hum'] = df_Rprocess['rmq_activ_hum'].replace([''],[None])
df_Rprocess.activ_humaine = df_Rprocess.activ_humaine.str.strip()
df_Rprocess.position = df_Rprocess.position.str.strip()
df_Rprocess.activ_humaine = df_Rprocess.activ_humaine.str[0].str.upper() + df_Rprocess.activ_humaine.str[1:].str.lower()
df_Rprocess.activ_humaine.replace(
['Dépots', 'Dépôt sauvage', 'Atterissement', "Entretien plan d'eau", "Création plan d'eau", 'Déchèterie communale' ,"Canalisation d'eau", 'Surpiétinement'],
['Dépôts', 'Dépôts sauvages', 'Atterrissement', "Entretien de plan d'eau", "Création de plan d'eau", 'Déchèterie', 'Canalisation', 'Piétinement'],
regex=True,
inplace=True
)
df_Rprocess.activ_humaine.replace(['Canalisation', 'Step'], ["Canalisation d'eau", 'STEP'],
regex=True, inplace=True
)
# Récupération du dictionnaire activité humaine
df_ActHum = pd.read_sql_table(
table_name='param_activ_hum',
schema = 'zones_humides',
con=con_zh
)
df_Rprocess['activ_hum_autre'] = None
df_Rprocess.loc[~df_Rprocess.activ_humaine.isin(df_ActHum.nom),'activ_hum_autre'] = df_Rprocess.loc[~df_Rprocess.activ_humaine.isin(df_ActHum.nom),'activ_humaine']
df_Rprocess.loc[~df_Rprocess.activ_hum_autre.isna(),'activ_humaine'] = df_ActHum.loc[df_ActHum.id==21, 'nom'].reset_index(drop=True)[0]
df_Rprocess.loc[(df_Rprocess.id_site=='38BB0073') & (df_Rprocess.activ_humaine.isna()),['activ_humaine', 'position','rmq_activ_hum']] = ["Pas d'activité marquante", 'ZH + EF','Anciennes mines']
df_Rprocess.loc[(df_Rprocess.id_site=='38BO0013') & (df_Rprocess.activ_humaine.isna()),['activ_humaine', 'position']] = ["Pas d'activité marquante", 'ZH + EF']
df_Rprocess.loc[(df_Rprocess.id_site=='38BO0081') & (df_Rprocess.activ_humaine.isna()),['activ_humaine', 'position']] = ["Pas d'activité marquante", 'ZH + EF']
df_Rprocess.loc[(df_Rprocess.id_site=='38BO0112') & (df_Rprocess.activ_humaine.isna()),['activ_humaine', 'position']] = ["Pas d'activité marquante", 'ZH + EF']
df_Rprocess.loc[(df_Rprocess.id_site=='38BO0303') & (df_Rprocess.activ_humaine.isna()),['activ_humaine', 'position']] = ["Pas d'activité marquante", 'ZH + EF']
df_Rprocess.loc[(df_Rprocess.id_site=='38CG0054') & (df_Rprocess.activ_humaine.isna()),['activ_humaine', 'position']] = ['Agriculture', 'ZH + EF']
df_Rprocess.loc[(df_Rprocess.id_site=='38CG0055') & (df_Rprocess.activ_humaine.isna()),['activ_humaine', 'position']] = ['Agriculture', 'ZH + EF']
df_Rprocess.loc[(df_Rprocess.id_site=='38CG0056') & (df_Rprocess.activ_humaine.isna()),['activ_humaine', 'position']] = ['Agriculture', 'ZH + EF']
df_Rprocess.loc[(df_Rprocess.id_site=='38CG0059') & (df_Rprocess.activ_humaine.isna()),['activ_humaine', 'position']] = ['Agriculture', 'ZH + EF']
df_Rprocess.loc[(df_Rprocess.id_site=='38CG0060') & (df_Rprocess.activ_humaine.isna()),['activ_humaine', 'position']] = ['Agriculture', 'ZH + EF']
df_Rprocess.loc[(df_Rprocess.id_site=='38CG0104') & (df_Rprocess.activ_humaine.isna()),['activ_humaine', 'position']] = ['Agriculture', 'ZH + EF']
df_Rprocess.loc[(df_Rprocess.id_site=='38CG0108') & (df_Rprocess.activ_humaine.isna()),['activ_humaine', 'position']] = ['Agriculture', 'ZH + EF']
df_Rprocess.loc[(df_Rprocess.id_site=='38DA0018') & (df_Rprocess.activ_humaine.isna()),['activ_humaine', 'position']] = ["Pas d'activité marquante", 'ZH + EF']
df_Rprocess.loc[(df_Rprocess.id_site=='38GC0008') & (df_Rprocess.activ_humaine.isna()), 'activ_humaine'] = "Autre (préciser dans l'encart réservé aux remarques)"
df_Rprocess.loc[(df_Rprocess.id_site=='38GC0096') & (df_Rprocess.activ_humaine.isna()),['activ_humaine', 'position']] = ["Pas d'activité marquante", 'ZH + EF']
df_Rprocess.loc[(df_Rprocess.id_site=='38GC0098') & (df_Rprocess.activ_humaine.isna()),['activ_humaine', 'position']] = ["Pas d'activité marquante", 'ZH + EF']
df_Rprocess.loc[(df_Rprocess.id_site=='38GL0003') & (df_Rprocess.activ_humaine.isna()),['activ_humaine', 'position']] = ["Pas d'activité marquante", 'ZH + EF']
df_Rprocess.loc[(df_Rprocess.id_site=='38GR0006') & (df_Rprocess.activ_humaine.isna()),['activ_humaine', 'position']] = ['Agriculture', 'EF']
df_Rprocess.loc[(df_Rprocess.id_site=='38MA0049') & (df_Rprocess.activ_humaine.isna()),['activ_humaine', 'position']] = ["Pas d'activité marquante", 'ZH + EF']
df_Rprocess.loc[(df_Rprocess.id_site=='38MA0054') & (df_Rprocess.activ_humaine.isna()),['activ_humaine', 'position']] = ["Pas d'activité marquante", 'ZH + EF']
df_Rprocess.loc[(df_Rprocess.id_site=='38MA0058') & (df_Rprocess.activ_humaine.isna()),['activ_humaine', 'position']] = ["Pas d'activité marquante", 'ZH + EF']
df_Rprocess.loc[(df_Rprocess.id_site=='38MA0060') & (df_Rprocess.activ_humaine.isna()),['activ_humaine','rmq_activ_hum','position']] = ["Sylviculture",'Coupe des arbres sous THT','ZH']
df_Rprocess.loc[(df_Rprocess.id_site=='38QV0020') & (df_Rprocess.activ_humaine.isna()),['activ_humaine', 'position']] = ["Pas d'activité marquante", 'ZH + EF']
df_Rprocess.loc[(df_Rprocess.id_site=='38QV0033') & (df_Rprocess.activ_humaine.isna()),['activ_humaine', 'position']] = ["Pas d'activité marquante", 'ZH + EF']
df_Rprocess.loc[(df_Rprocess.id_site=='38RH0038') & (df_Rprocess.activ_humaine.isna()),['activ_humaine', 'position']] = ["Pas d'activité marquante", 'ZH + EF']
df_Rprocess.loc[(df_Rprocess.id_site=='38RH0056') & (df_Rprocess.activ_humaine.isna()),['activ_humaine', 'position']] = ["Pas d'activité marquante", 'ZH + EF']
df_Rprocess.loc[(df_Rprocess.id_site=='38RH0101') & (df_Rprocess.activ_humaine.isna()),['activ_humaine', 'position']] = ["Pas d'activité marquante", 'ZH + EF']
df_Rprocess.loc[(df_Rprocess.id_site=='38RD0005') & (df_Rprocess.activ_humaine.isna()),['activ_humaine', 'position']] = ["Pas d'activité marquante", 'ZH + EF']
df_Rprocess.loc[(df_Rprocess.id_site=='38RD0023') & (df_Rprocess.activ_humaine.isna()),['activ_humaine', 'position']] = ["Pas d'activité marquante", 'ZH + EF']
df_Rprocess.loc[(df_Rprocess.id_site=='38RD0032') & (df_Rprocess.activ_humaine.isna()),['activ_humaine', 'position']] = ["Pas d'activité marquante", 'ZH + EF']
df_Rprocess.loc[(df_Rprocess.id_site=='38RD0048') & (df_Rprocess.activ_humaine.isna()),['activ_humaine', 'position']] = ["Pas d'activité marquante", 'ZH + EF']
df_Rprocess.loc[(df_Rprocess.id_site=='38RD0055') & (df_Rprocess.activ_humaine.isna()),['activ_humaine', 'position']] = ["Pas d'activité marquante", 'ZH + EF']
df_Rprocess.loc[(df_Rprocess.id_site=='38RD0061') & (df_Rprocess.activ_humaine.isna()),['activ_humaine', 'position']] = ["Pas d'activité marquante", 'ZH + EF']
df_Rprocess.loc[(df_Rprocess.id_site=='38RD0063') & (df_Rprocess.activ_humaine.isna()),['activ_humaine', 'position']] = ["Pas d'activité marquante", 'ZH + EF']
df_Rprocess.loc[(df_Rprocess.id_site=='38RD0065') & (df_Rprocess.activ_humaine.isna()),['activ_humaine', 'position']] = ["Pas d'activité marquante", 'ZH + EF']
df_Rprocess.loc[(df_Rprocess.id_site=='38RD0083') & (df_Rprocess.activ_humaine.isna()),['activ_humaine', 'position']] = ["Pas d'activité marquante", 'ZH + EF']
df_Rprocess.loc[(df_Rprocess.id_site=='38RD0085') & (df_Rprocess.activ_humaine.isna()),['activ_humaine', 'position']] = ["Pas d'activité marquante", 'ZH + EF']
df_Rprocess.loc[(df_Rprocess.id_site=='38RD0086') & (df_Rprocess.activ_humaine.isna()),['activ_humaine', 'position']] = ["Pas d'activité marquante", 'ZH + EF']
df_Rprocess.loc[(df_Rprocess.id_site=='38RD0099') & (df_Rprocess.activ_humaine.isna()),['activ_humaine', 'position']] = ["Pas d'activité marquante", 'ZH + EF']
df_Rprocess.loc[(df_Rprocess.id_site=='38RD0126') & (df_Rprocess.activ_humaine.isna()),['activ_humaine', 'position']] = ["Autre (préciser dans l'encart réservé aux remarques)", 'ZH']
df_Rprocess.loc[(df_Rprocess.id_site=='38RD0143') & (df_Rprocess.activ_humaine.isna()),['activ_humaine', 'position']] = ["Pas d'activité marquante", 'ZH + EF']
df_Rprocess.loc[(df_Rprocess.id_site=='38RD0146') & (df_Rprocess.activ_humaine.isna()),['activ_humaine', 'position']] = ["Pas d'activité marquante", 'ZH + EF']
df_Rprocess.loc[(df_Rprocess.id_site=='38RD0147') & (df_Rprocess.activ_humaine.isna()),['activ_humaine', 'position']] = ["Pas d'activité marquante", 'ZH + EF']
df_Rprocess.loc[(df_Rprocess.id_site=='38RD0160') & (df_Rprocess.activ_humaine.isna()),['activ_humaine', 'position']] = ["Pas d'activité marquante", 'ZH + EF']
df_Rprocess.loc[(df_Rprocess.id_site=='38RD0164') & (df_Rprocess.activ_humaine.isna()),['activ_humaine', 'position']] = ["Pas d'activité marquante", 'ZH + EF']
df_Rprocess.loc[(df_Rprocess.id_site=='38VA0005') & (df_Rprocess.activ_humaine.isna()),['activ_humaine', 'position']] = ["Pas d'activité marquante", 'ZH + EF']
df_Rprocess.loc[(df_Rprocess.id_site=='38VA0007') & (df_Rprocess.activ_humaine.isna()),['activ_humaine', 'position']] = ["Pas d'activité marquante", 'ZH + EF']
df_Rprocess.loc[(df_Rprocess.id_site=='38VA0012') & (df_Rprocess.activ_humaine.isna()),['activ_humaine', 'position']] = ["Pas d'activité marquante", 'ZH + EF']
df_Rprocess.loc[(df_Rprocess.id_site=='38VA0021') & (df_Rprocess.activ_humaine == "Pas d'activité marquante"),['position']] = ['ZH + EF']
df_Rprocess.loc[(df_Rprocess.id_site=='38VA0025') & (df_Rprocess.activ_humaine.isna()),['activ_humaine', 'position']] = ["Pas d'activité marquante", 'ZH + EF']
df_Rprocess.loc[(df_Rprocess.id_site=='38VE0227') & (df_Rprocess.activ_humaine.isna()),['activ_humaine', 'position']] = ["Pas d'activité marquante", 'ZH + EF']
df_Rprocess.loc[(df_Rprocess.id_site=='38VE0344') & (df_Rprocess.activ_humaine.isna()),['activ_humaine', 'position']] = ["Pas d'activité marquante", 'ZH + EF']
df_Rprocess.loc[(df_Rprocess.id_site=='26PNRV0111') & (df_Rprocess.activ_humaine.isna()),['activ_humaine', 'position']] = ["Pas d'activité marquante", 'ZH + EF']
# '38RD0163' ADD ['Urbanisation', 'ZH']
d1 = df_Rprocess[(df_Rprocess.id_site=='38RD0163') & (df_Rprocess.activ_humaine.isna())].copy()
d1[['activ_humaine', 'position']] = ["Infrastructures linéaires (routes, voies ferrées)", 'EF']
df_Rprocess.loc[(df_Rprocess.id_site=='38RD0163') & (df_Rprocess.activ_humaine.isna()),['activ_humaine','rmq_activ_hum', 'position']] = [
"Élevage / pastoralisme",'Equin','ZH + EF']
df_Rprocess = pd.concat([df_Rprocess, d1]).sort_values('id_site')
# '38RD0162' ADD ['Urbanisation', 'ZH']
d1 = df_Rprocess[(df_Rprocess.id_site=='38RD0162') & (df_Rprocess.activ_humaine.isna())].copy()
d1[['activ_humaine','rmq_activ_hum', 'position']] = ["Élevage / pastoralisme",'Ovin', 'ZH + EF']
df_Rprocess.loc[(df_Rprocess.id_site=='38RD0162') & (df_Rprocess.activ_humaine.isna()),['activ_humaine','rmq_activ_hum', 'position']] = [
'Tourisme et loisirs (camping, zone de stationnement)','Randonnée', 'ZH + EF']
# '38RD0161' ADD ['Urbanisation', 'ZH']
d1 = df_Rprocess[(df_Rprocess.id_site=='38RD0161') & (df_Rprocess.activ_humaine.isna())].copy()
d1[['activ_humaine', 'position']] = ["Élevage / pastoralisme", 'ZH + EF']
df_Rprocess.loc[(df_Rprocess.id_site=='38RD0161') & (df_Rprocess.activ_humaine.isna()),['activ_humaine','rmq_activ_hum', 'position']] = [
'Tourisme et loisirs (camping, zone de stationnement)','Randonnée', 'ZH + EF']
# '38RD0159' ADD ['Urbanisation', 'ZH']
df_Rprocess.loc[(df_Rprocess.id_site=='38RD0159') & (df_Rprocess.activ_humaine.isna()),['activ_humaine', 'position']] = [
"Élevage / pastoralisme",'ZH + EF']
# '38RD0158' ADD ['Urbanisation', 'ZH']
d1 = df_Rprocess[(df_Rprocess.id_site=='38RD0158') & (df_Rprocess.activ_humaine.isna())].copy()
d1[['activ_humaine', 'position']] = ["Élevage / pastoralisme", 'ZH + EF']
df_Rprocess.loc[(df_Rprocess.id_site=='38RD0158') & (df_Rprocess.activ_humaine.isna()),['activ_humaine','rmq_activ_hum', 'position']] = [
"Tourisme et loisirs (camping, zone de stationnement)",'VTT','ZH + EF']
df_Rprocess = pd.concat([df_Rprocess, d1]).sort_values('id_site')
# '38RD0157' ADD ['Urbanisation', 'ZH']
d1 = df_Rprocess[(df_Rprocess.id_site=='38RD0157') & (df_Rprocess.activ_humaine.isna())].copy()
d1[['activ_humaine', 'position']] = ["Infrastructures linéaires (routes, voies ferrées)", 'ZH + EF']
df_Rprocess.loc[(df_Rprocess.id_site=='38RD0157') & (df_Rprocess.activ_humaine.isna()),['activ_humaine','rmq_activ_hum', 'position']] = [
"Élevage / pastoralisme",'Equin','ZH + EF']
df_Rprocess = pd.concat([df_Rprocess, d1]).sort_values('id_site')
# '38RD0156' ADD ['Urbanisation', 'ZH']
df_Rprocess.loc[(df_Rprocess.id_site=='38RD0156') & (df_Rprocess.activ_humaine.isna()),['activ_humaine','rmq_activ_hum', 'position']] = [
"Élevage / pastoralisme",'Bovin','ZH + EF']
# '38RD0155' ADD ['Urbanisation', 'ZH']
d1 = df_Rprocess[(df_Rprocess.id_site=='38RD0155') & (df_Rprocess.activ_humaine.isna())].copy()
d1[['activ_humaine','rmq_activ_hum', 'position']] = ["Élevage / pastoralisme",'Bovin', 'ZH + EF']
df_Rprocess.loc[(df_Rprocess.id_site=='38RD0155') & (df_Rprocess.activ_humaine.isna()),['activ_humaine','rmq_activ_hum', 'position']] = [
'Tourisme et loisirs (camping, zone de stationnement)','Ski', 'ZH + EF']
df_Rprocess = pd.concat([df_Rprocess, d1]).sort_values('id_site')
# '38RD0153' ADD ['Urbanisation', 'ZH']
df_Rprocess.loc[(df_Rprocess.id_site=='38RD0153') & (df_Rprocess.activ_humaine.isna()),['activ_humaine','rmq_activ_hum', 'position']] = [
"Élevage / pastoralisme",'Bovin','ZH + EF']
# '38RD0152' ADD ['Urbanisation', 'ZH']
d1 = df_Rprocess[(df_Rprocess.id_site=='38RD0152') & (df_Rprocess.activ_humaine.isna())].copy()
d2 = df_Rprocess[(df_Rprocess.id_site=='38RD0152') & (df_Rprocess.activ_humaine.isna())].copy()
d1[['activ_humaine','rmq_activ_hum', 'position']] = ["Élevage / pastoralisme",'Bovin', 'ZH + EF']
d2[['activ_humaine', 'position']] = ['Urbanisation', 'EF']
df_Rprocess.loc[(df_Rprocess.id_site=='38RD0152') & (df_Rprocess.activ_humaine.isna()),['activ_humaine','rmq_activ_hum', 'position']] = [
'Tourisme et loisirs (camping, zone de stationnement)','Randonnée, Ski', 'ZH + EF']
df_Rprocess = pd.concat([df_Rprocess, d1, d2]).sort_values('id_site')
# '38RD0151' ADD ['Urbanisation', 'ZH']
d1 = df_Rprocess[(df_Rprocess.id_site=='38RD0151') & (df_Rprocess.activ_humaine.isna())].copy()
d2 = df_Rprocess[(df_Rprocess.id_site=='38RD0151') & (df_Rprocess.activ_humaine.isna())].copy()
d1[['activ_humaine','rmq_activ_hum', 'position']] = ["Élevage / pastoralisme",'Equin', 'ZH + EF']
d2[['activ_humaine','rmq_activ_hum', 'position']] = ["Prélèvements d'eau",'Captage', 'ZH + EF']
df_Rprocess.loc[(df_Rprocess.id_site=='38RD0151') & (df_Rprocess.activ_humaine.isna()),['activ_humaine','rmq_activ_hum', 'position']] = [
'Tourisme et loisirs (camping, zone de stationnement)','Randonnée', 'ZH + EF']
df_Rprocess = pd.concat([df_Rprocess, d1, d2]).sort_values('id_site')
# '38RD0150' ADD ['Urbanisation', 'ZH']
d1 = df_Rprocess[(df_Rprocess.id_site=='38RD0150') & (df_Rprocess.activ_humaine.isna())].copy()
d1[['activ_humaine','rmq_activ_hum', 'position']] = ["Élevage / pastoralisme",'Equin', 'ZH + EF']
df_Rprocess.loc[(df_Rprocess.id_site=='38RD0150') & (df_Rprocess.activ_humaine.isna()),['activ_humaine', 'position']] = ['Chasse', 'ZH + EF']
df_Rprocess = pd.concat([df_Rprocess, d1]).sort_values('id_site')
# '38RD0149' ADD ['Urbanisation', 'ZH']
df_Rprocess.loc[(df_Rprocess.id_site=='38RD0149') & (df_Rprocess.activ_humaine.isna()),['activ_humaine','rmq_activ_hum', 'position']] = [
'Tourisme et loisirs (camping, zone de stationnement)', 'Randonnée','ZH + EF']
# '38RD0148' ADD ['Urbanisation', 'ZH']
d1 = df_Rprocess[(df_Rprocess.id_site=='38RD0148') & (df_Rprocess.activ_humaine.isna())].copy()
d1[['activ_humaine','rmq_activ_hum', 'position']] = ["Tourisme et loisirs (camping, zone de stationnement)",'Randonnée', 'ZH + EF']
df_Rprocess.loc[(df_Rprocess.id_site=='38RD0148') & (df_Rprocess.activ_humaine.isna()),['activ_humaine', 'position']] = ['Chasse', 'ZH + EF']
df_Rprocess = pd.concat([df_Rprocess, d1]).sort_values('id_site')
# '38VS0057' ADD ['Urbanisation', 'ZH']
d1 = df_Rprocess[(df_Rprocess.id_site=='38VS0057') & (df_Rprocess.activ_humaine.isna())].copy()
d2 = df_Rprocess[(df_Rprocess.id_site=='38VS0057') & (df_Rprocess.activ_humaine.isna())].copy()
d1[['activ_humaine', 'position']] = ['Pêche', 'ZH']
d2[['activ_humaine', 'position']] = ["Tourisme et loisirs (camping, zone de stationnement)", 'EF']
df_Rprocess.loc[(df_Rprocess.id_site=='38VS0057') & (df_Rprocess.activ_humaine.isna()),['activ_humaine', 'position']] = ['Urbanisation', 'ZH + EF']
df_Rprocess = pd.concat([df_Rprocess, d1,d2]).sort_values('id_site')
# '38VS0056' ADD ['Urbanisation', 'ZH']
d1 = df_Rprocess[(df_Rprocess.id_site=='38VS0056') & (df_Rprocess.activ_humaine.isna())].copy()
d1[['activ_humaine', 'position']] = ["Autre (préciser dans l'encart réservé aux remarques)", 'ZH']
df_Rprocess.loc[(df_Rprocess.id_site=='38VS0056') & (df_Rprocess.activ_humaine.isna()),['activ_humaine', 'position']] = ['Agriculture', 'ZH + EF']
df_Rprocess = pd.concat([df_Rprocess, d1]).sort_values('id_site')
# '38VS0055' ADD ['Urbanisation', 'ZH']
d1 = df_Rprocess[(df_Rprocess.id_site=='38VS0055') & (df_Rprocess.activ_humaine.isna())].copy()
d2 = df_Rprocess[(df_Rprocess.id_site=='38VS0055') & (df_Rprocess.activ_humaine.isna())].copy()
d3 = df_Rprocess[(df_Rprocess.id_site=='38VS0055') & (df_Rprocess.activ_humaine.isna())].copy()
d1[['activ_humaine', 'position']] = ['Sylviculture', 'ZH + EF']
d2[['activ_humaine', 'position']] = ['Pêche', 'ZH']
d3[['activ_humaine', 'position']] = ["Tourisme et loisirs (camping, zone de stationnement)", 'EF']
df_Rprocess.loc[(df_Rprocess.id_site=='38VS0055') & (df_Rprocess.activ_humaine.isna()),['activ_humaine', 'position']] = ['Urbanisation', 'ZH + EF']
df_Rprocess = pd.concat([df_Rprocess, d1,d2,d3]).sort_values('id_site')
# '38VS0054' ADD ['Urbanisation', 'ZH']
d1 = df_Rprocess[(df_Rprocess.id_site=='38VS0054') & (df_Rprocess.activ_humaine.isna())].copy()
d2 = df_Rprocess[(df_Rprocess.id_site=='38VS0054') & (df_Rprocess.activ_humaine.isna())].copy()
d3 = df_Rprocess[(df_Rprocess.id_site=='38VS0054') & (df_Rprocess.activ_humaine.isna())].copy()
d4 = df_Rprocess[(df_Rprocess.id_site=='38VS0054') & (df_Rprocess.activ_humaine.isna())].copy()
d5 = df_Rprocess[(df_Rprocess.id_site=='38VS0054') & (df_Rprocess.activ_humaine.isna())].copy()
d6 = df_Rprocess[(df_Rprocess.id_site=='38VS0054') & (df_Rprocess.activ_humaine.isna())].copy()
d1[['activ_humaine', 'position']] = ['Sylviculture', 'ZH']
d2[['activ_humaine', 'position']] = ['Pêche', 'ZH']
d3[['activ_humaine', 'position']] = ['Chasse', 'ZH + EF']
d4[['activ_humaine', 'position']] = ["Tourisme et loisirs (camping, zone de stationnement)", 'ZH + EF']
d5[['activ_humaine','rmq_activ_hum', 'position']] = ["Prélèvements d'eau",'Irrigation', 'ZH']
df_Rprocess.loc[(df_Rprocess.id_site=='38VS0054') & (df_Rprocess.activ_humaine.isna()),['activ_humaine', 'position']] = ['Agriculture', 'EF']
df_Rprocess = pd.concat([df_Rprocess, d1,d2,d3,d4,d5]).sort_values('id_site')
# '38VS0053' ADD ['Urbanisation', 'ZH']
d1 = df_Rprocess[(df_Rprocess.id_site=='38VS0053') & (df_Rprocess.activ_humaine.isna())].copy()
d2 = df_Rprocess[(df_Rprocess.id_site=='38VS0053') & (df_Rprocess.activ_humaine.isna())].copy()
d3 = df_Rprocess[(df_Rprocess.id_site=='38VS0053') & (df_Rprocess.activ_humaine.isna())].copy()
d4 = df_Rprocess[(df_Rprocess.id_site=='38VS0053') & (df_Rprocess.activ_humaine.isna())].copy()
d5 = df_Rprocess[(df_Rprocess.id_site=='38VS0053') & (df_Rprocess.activ_humaine.isna())].copy()
d6 = df_Rprocess[(df_Rprocess.id_site=='38VS0053') & (df_Rprocess.activ_humaine.isna())].copy()
d1[['activ_humaine', 'position']] = ['Urbanisation', 'EF']
d2[['activ_humaine', 'position']] = ['Infrastructures linéaires (routes, voies ferrées)', 'EF']
d3[['activ_humaine', 'position']] = ["Autre (préciser dans l'encart réservé aux remarques)", 'EF']
d4[['activ_humaine','rmq_activ_hum', 'position']] = ["Autre (préciser dans l'encart réservé aux remarques)",'Remblais', 'ZH + EF']
df_Rprocess.loc[(df_Rprocess.id_site=='38VS0053') & (df_Rprocess.activ_humaine.isna()),['activ_humaine', 'position']] = ['Agriculture', 'ZH + EF']
df_Rprocess = pd.concat([df_Rprocess, d1,d2,d3,d4]).sort_values('id_site')
# '38VS0052' ADD ['Urbanisation', 'ZH']
d1 = df_Rprocess[(df_Rprocess.id_site=='38VS0052') & (df_Rprocess.activ_humaine.isna())].copy()
d2 = df_Rprocess[(df_Rprocess.id_site=='38VS0052') & (df_Rprocess.activ_humaine.isna())].copy()
d3 = df_Rprocess[(df_Rprocess.id_site=='38VS0052') & (df_Rprocess.activ_humaine.isna())].copy()
d4 = df_Rprocess[(df_Rprocess.id_site=='38VS0052') & (df_Rprocess.activ_humaine.isna())].copy()
d5 = df_Rprocess[(df_Rprocess.id_site=='38VS0052') & (df_Rprocess.activ_humaine.isna())].copy()
d6 = df_Rprocess[(df_Rprocess.id_site=='38VS0052') & (df_Rprocess.activ_humaine.isna())].copy()
d1[['activ_humaine', 'position']] = ["Sylviculture", 'EF']
d2[['activ_humaine','rmq_activ_hum', 'position']] = ["Élevage / pastoralisme",'Equin', 'EF']
d3[['activ_humaine', 'position']] = ["Pêche", 'ZH']
d4[['activ_humaine', 'position']] = ['Tourisme et loisirs (camping, zone de stationnement)', 'ZH + EF']
d5[['activ_humaine', 'position']] = ['Urbanisation', 'EF']
d6[['activ_humaine', 'position']] = ['Infrastructures linéaires (routes, voies ferrées)', 'EF']
df_Rprocess.loc[(df_Rprocess.id_site=='38VS0052') & (df_Rprocess.activ_humaine.isna()),['activ_humaine', 'position']] = ['Agriculture', 'EF']
df_Rprocess = pd.concat([df_Rprocess, d1,d2,d3,d4,d5,d6]).sort_values('id_site')
# '38VS0051' ADD ["Prélèvements d'eau", 'ZH']
d1 = df_Rprocess[(df_Rprocess.id_site=='38VS0051') & (df_Rprocess.activ_humaine.isna())].copy()
d2 = df_Rprocess[(df_Rprocess.id_site=='38VS0051') & (df_Rprocess.activ_humaine.isna())].copy()
d3 = df_Rprocess[(df_Rprocess.id_site=='38VS0051') & (df_Rprocess.activ_humaine.isna())].copy()
d1[['activ_humaine', 'position']] = ["Urbanisation", 'EF']
d2[['activ_humaine','rmq_activ_hum', 'position']] = ["Élevage / pastoralisme",'Bovin', 'ZH + EF']
d3[['activ_humaine','rmq_activ_hum', 'position']] = ["Prélèvements d'eau",'Pompage agricole, Abrevoir', 'ZH']
df_Rprocess.loc[(df_Rprocess.id_site=='38VS0051') & (df_Rprocess.activ_humaine.isna()),['activ_humaine', 'position']] = ["Agriculture", 'ZH + EF']
df_Rprocess = pd.concat([df_Rprocess, d1,d2,d3])
# '38VS0050' ADD ["Prélèvements d'eau", 'ZH']
d1 = df_Rprocess[(df_Rprocess.id_site=='38VS0050') & (df_Rprocess.activ_humaine.isna())].copy()
d2 = df_Rprocess[(df_Rprocess.id_site=='38VS0050') & (df_Rprocess.activ_humaine.isna())].copy()
d1[['activ_humaine', 'position']] = ["Urbanisation", 'EF']
d2[['activ_humaine','rmq_activ_hum', 'position']] = ["Infrastructures linéaires (routes, voies ferrées)",'Autoroute', 'ZH + EF']
df_Rprocess.loc[(df_Rprocess.id_site=='38VS0050') & (df_Rprocess.activ_humaine.isna()),['activ_humaine', 'position']] = ["Agriculture", 'EF']
df_Rprocess = pd.concat([df_Rprocess, d1,d2])
# '38VS0049' ADD ['Urbanisation', 'ZH']
d1 = df_Rprocess[(df_Rprocess.id_site=='38VS0049') & (df_Rprocess.activ_humaine.isna())].copy()
d2 = df_Rprocess[(df_Rprocess.id_site=='38VS0049') & (df_Rprocess.activ_humaine.isna())].copy()
d3 = df_Rprocess[(df_Rprocess.id_site=='38VS0049') & (df_Rprocess.activ_humaine.isna())].copy()
d4 = df_Rprocess[(df_Rprocess.id_site=='38VS0049') & (df_Rprocess.activ_humaine.isna())].copy()
d5 = df_Rprocess[(df_Rprocess.id_site=='38VS0049') & (df_Rprocess.activ_humaine.isna())].copy()
d6 = df_Rprocess[(df_Rprocess.id_site=='38VS0049') & (df_Rprocess.activ_humaine.isna())].copy()
d7 = df_Rprocess[(df_Rprocess.id_site=='38VS0049') & (df_Rprocess.activ_humaine.isna())].copy()
d8 = df_Rprocess[(df_Rprocess.id_site=='38VS0049') & (df_Rprocess.activ_humaine.isna())].copy()
d9 = df_Rprocess[(df_Rprocess.id_site=='38VS0049') & (df_Rprocess.activ_humaine.isna())].copy()
d1[['activ_humaine', 'position']] = ["Sylviculture", 'ZH + EF']
d2[['activ_humaine', 'position']] = ["Élevage / pastoralisme", 'ZH + EF']
d3[['activ_humaine', 'position']] = ["Pêche", 'ZH']
d4[['activ_humaine', 'position']] = ['Tourisme et loisirs (camping, zone de stationnement)', 'ZH']
d5[['activ_humaine', 'position']] = ['Urbanisation', 'ZH + EF']
d6[['activ_humaine', 'position']] = ['Industrie', 'EF']
d7[['activ_humaine', 'position']] = ["Infrastructures linéaires (routes, voies ferrées)", 'EF']
d8[['activ_humaine', 'position','rmq_activ_hum']] = ["Prélèvements d'eau", 'ZH','Pompage, lavoir']
d9[['activ_humaine', 'position']] = ["Autre (préciser dans l'encart réservé aux remarques)", 'ZH']
df_Rprocess.loc[(df_Rprocess.id_site=='38VS0049') & (df_Rprocess.activ_humaine.isna()),['activ_humaine', 'position']] = ['Agriculture', 'ZH + EF']
df_Rprocess = pd.concat([df_Rprocess, d1,d2,d3,d4,d5,d6,d7,d8,d9]).sort_values('id_site')
# '38VS0048' ADD ['Urbanisation', 'ZH']
d1 = df_Rprocess[(df_Rprocess.id_site=='38VS0048') & (df_Rprocess.activ_humaine.isna())].copy()
d2 = df_Rprocess[(df_Rprocess.id_site=='38VS0048') & (df_Rprocess.activ_humaine.isna())].copy()
d3 = df_Rprocess[(df_Rprocess.id_site=='38VS0048') & (df_Rprocess.activ_humaine.isna())].copy()
d1[['activ_humaine', 'position']] = ["Autre (préciser dans l'encart réservé aux remarques)", 'EF']
d2[['activ_humaine', 'position']] = ["Infrastructures linéaires (routes, voies ferrées)", 'EF']
d3[['activ_humaine', 'position']] = ["Industrie", 'EF']
df_Rprocess.loc[(df_Rprocess.id_site=='38VS0048') & (df_Rprocess.activ_humaine.isna()),['activ_humaine', 'position']] = ['Urbanisation', 'EF']
df_Rprocess = pd.concat([df_Rprocess, d1,d2,d3]).sort_values('id_site')
# '38VS0047' ADD ["Prélèvements d'eau", 'ZH']
d = df_Rprocess[(df_Rprocess.id_site=='38VS0047') & (df_Rprocess.activ_humaine.isna())].copy()
d[['activ_humaine','rmq_activ_hum', 'position']] = ["Élevage / pastoralisme",'Bovin', 'ZH + EF']
df_Rprocess.loc[(df_Rprocess.id_site=='38VS0047') & (df_Rprocess.activ_humaine.isna()),['activ_humaine', 'position']] = ["Agriculture", 'EF']
df_Rprocess = pd.concat([df_Rprocess, d])
# '38VS0046' ADD ['Urbanisation', 'ZH']
d1 = df_Rprocess[(df_Rprocess.id_site=='38VS0046') & (df_Rprocess.activ_humaine.isna())].copy()
d2 = df_Rprocess[(df_Rprocess.id_site=='38VS0046') & (df_Rprocess.activ_humaine.isna())].copy()
d3 = df_Rprocess[(df_Rprocess.id_site=='38VS0046') & (df_Rprocess.activ_humaine.isna())].copy()
d4 = df_Rprocess[(df_Rprocess.id_site=='38VS0046') & (df_Rprocess.activ_humaine.isna())].copy()
d1[['activ_humaine', 'position']] = ["Autre (préciser dans l'encart réservé aux remarques)", 'EF']
d2[['activ_humaine','rmq_activ_hum', 'position']] = ["Élevage / pastoralisme",'Bovin, abeilles', 'ZH + EF']
d3[['activ_humaine', 'position']] = ["Prélèvements d'eau", 'ZH']
d4[['activ_humaine', 'position']] = ['Urbanisation', 'EF']
df_Rprocess.loc[(df_Rprocess.id_site=='38VS0046') & (df_Rprocess.activ_humaine.isna()),['activ_humaine', 'position']] = ['Agriculture', 'ZH + EF']
df_Rprocess = pd.concat([df_Rprocess, d1,d2,d3,d4]).sort_values('id_site')
# '38RD0128' ADD ["Prélèvements d'eau", 'ZH']
d1 = df_Rprocess[(df_Rprocess.id_site=='38RD0128') & (df_Rprocess.activ_humaine.isna())].copy()
d2 = df_Rprocess[(df_Rprocess.id_site=='38RD0128') & (df_Rprocess.activ_humaine.isna())].copy()
d1[['activ_humaine', 'position']] = ["Élevage / pastoralisme", 'ZH + EF']
d2[['activ_humaine', 'position']] = ["Chasse", 'ZH + EF']
df_Rprocess.loc[(df_Rprocess.id_site=='38RD0128') & (df_Rprocess.activ_humaine.isna()),['activ_humaine','rmq_activ_hum', 'position']] = ["Activité militaire",'Zone de tirs temporaires du Galibier-Grandes Rousses', 'ZH + EF']
df_Rprocess = pd.concat([df_Rprocess, d1,d2])
# '38RD0165' ADD ["Prélèvements d'eau", 'ZH']
d1 = df_Rprocess[(df_Rprocess.id_site=='38RD0165') & (df_Rprocess.activ_humaine.isna())].copy()
d2 = df_Rprocess[(df_Rprocess.id_site=='38RD0165') & (df_Rprocess.activ_humaine.isna())].copy()
d1[['activ_humaine', 'position']] = ["Infrastructures linéaires (routes, voies ferrées)", 'EF']
d2[['activ_humaine', 'position']] = ["Extraction de granulats, mines", 'ZH']
df_Rprocess.loc[(df_Rprocess.id_site=='38RD0165') & (df_Rprocess.activ_humaine.isna()),['activ_humaine', 'position']] = ["Activité hydroélectrique, barrage", 'ZH']
df_Rprocess = pd.concat([df_Rprocess, d1,d2])
# '38RH0292' ADD ['Urbanisation', 'ZH']
d1 = df_Rprocess[(df_Rprocess.id_site=='38RH0292') & (df_Rprocess.activ_humaine.isna())].copy()
d2 = df_Rprocess[(df_Rprocess.id_site=='38RH0292') & (df_Rprocess.activ_humaine.isna())].copy()
d3 = df_Rprocess[(df_Rprocess.id_site=='38RH0292') & (df_Rprocess.activ_humaine.isna())].copy()
d4 = df_Rprocess[(df_Rprocess.id_site=='38RH0292') & (df_Rprocess.activ_humaine.isna())].copy()
d5 = df_Rprocess[(df_Rprocess.id_site=='38RH0292') & (df_Rprocess.activ_humaine.isna())].copy()
d1[['activ_humaine', 'position','activ_hum_autre']] = ["Autre (préciser dans l'encart réservé aux remarques)", 'ZH', 'Remblais']
d2[['activ_humaine', 'position']] = ["Élevage / pastoralisme", 'ZH + EF']
d3[['activ_humaine', 'position']] = ['Tourisme et loisirs (camping, zone de stationnement)', 'ZH']
d4[['activ_humaine', 'position']] = ['Urbanisation', 'ZH']
d5[['activ_humaine', 'position']] = ["Infrastructures linéaires (routes, voies ferrées)", 'ZH + EF']
df_Rprocess.loc[(df_Rprocess.id_site=='38RH0292') & (df_Rprocess.activ_humaine.isna()),['activ_humaine', 'position']] = ['Agriculture', 'ZH']
df_Rprocess = pd.concat([df_Rprocess, d1,d2,d3,d4,d5]).sort_values('id_site')
# '38MA0059' ADD ["Prélèvements d'eau", 'ZH']
d1 = df_Rprocess[(df_Rprocess.id_site=='38MA0059') & (df_Rprocess.activ_humaine.isna())].copy()
d2 = df_Rprocess[(df_Rprocess.id_site=='38MA0059') & (df_Rprocess.activ_humaine.isna())].copy()
d1[['activ_humaine', 'position']] = ["Élevage / pastoralisme", 'ZH + EF']
d2[['activ_humaine', 'position']] = ["Chasse", 'ZH + EF']
df_Rprocess.loc[(df_Rprocess.id_site=='38MA0059') & (df_Rprocess.activ_humaine.isna()),['activ_humaine', 'position']] = ["Agriculture", 'ZH + EF']
df_Rprocess = pd.concat([df_Rprocess, d1,d2])
# '38DA0019' ADD ["Prélèvements d'eau", 'ZH']
d = df_Rprocess[(df_Rprocess.id_site=='38DA0019') & (df_Rprocess.activ_humaine.isna())].copy()
d[['activ_humaine', 'position']] = ["Élevage / pastoralisme", 'ZH + EF']
df_Rprocess.loc[(df_Rprocess.id_site=='38DA0019') & (df_Rprocess.activ_humaine.isna()),['activ_humaine', 'position']] = ["Chasse", 'ZH + EF']
df_Rprocess = pd.concat([df_Rprocess, d])
# '38DA0020' ADD ["Prélèvements d'eau", 'ZH']
d1 = df_Rprocess[(df_Rprocess.id_site=='38DA0020') & (df_Rprocess.activ_humaine.isna())].copy()
d2 = df_Rprocess[(df_Rprocess.id_site=='38DA0020') & (df_Rprocess.activ_humaine.isna())].copy()
d1[['activ_humaine', 'position']] = ["Élevage / pastoralisme", 'ZH + EF']
d2[['activ_humaine', 'position']] = ["Prélèvements d'eau", 'ZH + EF']
df_Rprocess.loc[(df_Rprocess.id_site=='38DA0020') & (df_Rprocess.activ_humaine.isna()),['activ_humaine', 'position']] = ["Chasse", 'ZH + EF']
df_Rprocess = pd.concat([df_Rprocess, d1,d2])
# '38CG0110' ADD ['Urbanisation', 'ZH']
d1 = df_Rprocess[(df_Rprocess.id_site=='38CG0110') & (df_Rprocess.activ_humaine.isna())].copy()
d2 = df_Rprocess[(df_Rprocess.id_site=='38CG0110') & (df_Rprocess.activ_humaine.isna())].copy()
d3 = df_Rprocess[(df_Rprocess.id_site=='38CG0110') & (df_Rprocess.activ_humaine.isna())].copy()
d1[['activ_humaine', 'position']] = ['Chasse', 'ZH']
d2[['activ_humaine', 'position']] = ['Tourisme et loisirs (camping, zone de stationnement)', 'EF']
d3[['activ_humaine', 'position']] = ["Prélèvements d'eau", 'ZH + EF']
df_Rprocess.loc[(df_Rprocess.id_site=='38CG0110') & (df_Rprocess.activ_humaine.isna()),['activ_humaine', 'position']] = ['Agriculture', 'EF']
df_Rprocess = pd.concat([df_Rprocess, d1,d2,d3]).sort_values('id_site')
# '26PNRV0208' ADD ["Prélèvements d'eau", 'ZH']
d = df_Rprocess[(df_Rprocess.id_site=='26PNRV0208') & (df_Rprocess.activ_humaine.isna())].copy()
d[['activ_humaine', 'position']] = ["Prélèvements d'eau", 'ZH']
df_Rprocess.loc[(df_Rprocess.id_site=='26PNRV0208') & (df_Rprocess.activ_humaine.isna()),['activ_humaine', 'position']] = ["Pas d'activité marquante", 'ZH']
df_Rprocess = pd.concat([df_Rprocess, d])
# '38BO0058' ADD ['Urbanisation', 'ZH']
d1 = df_Rprocess[(df_Rprocess.id_site=='38BO0058') & (df_Rprocess.activ_humaine.isna())].copy()
d2 = df_Rprocess[(df_Rprocess.id_site=='38BO0058') & (df_Rprocess.activ_humaine.isna())].copy()
d3 = df_Rprocess[(df_Rprocess.id_site=='38BO0058') & (df_Rprocess.activ_humaine.isna())].copy()
d1[['activ_humaine', 'position']] = ['Pêche', 'ZH']
d2[['activ_humaine', 'position']] = ['Urbanisation', 'EF']
d3[['activ_humaine', 'position']] = ["Infrastructures linéaires (routes, voies ferrées)", 'EF']
df_Rprocess.loc[(df_Rprocess.id_site=='38BO0058') & (df_Rprocess.activ_humaine.isna()),['activ_humaine', 'position']] = ['Agriculture', 'ZH + EF']
df_Rprocess = pd.concat([df_Rprocess, d1,d2,d3]).sort_values('id_site')
# '38VE0119' ADD ['Agriculture', 'EF']
d = df_Rprocess[(df_Rprocess.id_site=='38VE0119') & (df_Rprocess.activ_humaine.isna())].copy()
d[['activ_humaine', 'position']] = ['Agriculture', 'EF']
df_Rprocess.loc[(df_Rprocess.id_site=='38VE0119') & (df_Rprocess.activ_humaine.isna()),['activ_humaine', 'position']] = ['Élevage / pastoralisme', 'ZH + EF']
df_Rprocess = pd.concat([df_Rprocess, d])
# '38VE0147' ADD ['Infrastructures linéaires (routes, voies ferrées)', 'EF']
d = df_Rprocess[(df_Rprocess.id_site=='38VE0147') & (df_Rprocess.activ_humaine.isna())].copy()
d[['activ_humaine', 'position']] = ['Infrastructures linéaires (routes, voies ferrées)', 'EF']
df_Rprocess.loc[(df_Rprocess.id_site=='38VE0147') & (df_Rprocess.activ_humaine.isna()),['activ_humaine', 'position']] = ['Élevage / pastoralisme', 'ZH']
df_Rprocess = pd.concat([df_Rprocess, d])
# '38VE0184' ADD ['Agriculture', 'EF']
d = df_Rprocess[(df_Rprocess.id_site=='38VE0184') & (df_Rprocess.activ_humaine.isna())].copy()
d[['activ_humaine', 'position']] = ['Agriculture', 'EF']
df_Rprocess.loc[(df_Rprocess.id_site=='38VE0184') & (df_Rprocess.activ_humaine.isna()),['activ_humaine', 'position']] = ['Pêche', 'ZH']
df_Rprocess = pd.concat([df_Rprocess, d])
# '38VE0280' ADD ['Urbanisation', 'ZH']
d = df_Rprocess[(df_Rprocess.id_site=='38VE0280') & (df_Rprocess.activ_humaine.isna())].copy()
d[['activ_humaine', 'position']] = ['Urbanisation', 'ZH']
df_Rprocess.loc[(df_Rprocess.id_site=='38VE0280') & (df_Rprocess.activ_humaine.isna()),['activ_humaine', 'position']] = ['Agriculture', 'ZH + EF']
df_Rprocess = pd.concat([df_Rprocess, d])
# '38VE0345' ADD ['Urbanisation', 'ZH']
d1 = df_Rprocess[(df_Rprocess.id_site=='38VE0345') & (df_Rprocess.activ_humaine.isna())].copy()
d2 = df_Rprocess[(df_Rprocess.id_site=='38VE0345') & (df_Rprocess.activ_humaine.isna())].copy()
d3 = df_Rprocess[(df_Rprocess.id_site=='38VE0345') & (df_Rprocess.activ_humaine.isna())].copy()
d1[['activ_humaine', 'position']] = ['Élevage / pastoralisme', 'ZH + EF']
d2[['activ_humaine', 'position']] = ['Infrastructures linéaires (routes, voies ferrées)', 'EF']
d3[['activ_humaine', 'position','activ_hum_autre']] = ["Autre (préciser dans l'encart réservé aux remarques)", 'ZH + EF', 'Remblais']
df_Rprocess.loc[(df_Rprocess.id_site=='38VE0345') & (df_Rprocess.activ_humaine.isna()),['activ_humaine', 'position']] = ['Agriculture', 'ZH + EF']
df_Rprocess = pd.concat([df_Rprocess, d1,d2,d3]).sort_values('id_site')
# '38VE0331' ADD ['Urbanisation', 'ZH']
d1 = df_Rprocess[(df_Rprocess.id_site=='38VE0331') & (df_Rprocess.activ_humaine.isna())].copy()
d2 = df_Rprocess[(df_Rprocess.id_site=='38VE0331') & (df_Rprocess.activ_humaine.isna())].copy()
d1[['activ_humaine', 'position']] = ['Élevage / pastoralisme', 'ZH + EF']
d2[['activ_humaine', 'position']] = ['Infrastructures linéaires (routes, voies ferrées)', 'ZH + EF']
df_Rprocess.loc[(df_Rprocess.id_site=='38VE0331') & (df_Rprocess.activ_humaine.isna()),['activ_humaine', 'position']] = ['Agriculture', 'ZH + EF']
df_Rprocess = pd.concat([df_Rprocess, d1,d2]).sort_values('id_site')
# '38VE0338' ADD ['Urbanisation', 'ZH']
d = df_Rprocess[(df_Rprocess.id_site=='38VE0338') & (df_Rprocess.activ_humaine.isna())].copy()
d[['activ_humaine', 'position']] = ['Infrastructures linéaires (routes, voies ferrées)', 'ZH + EF']
df_Rprocess.loc[(df_Rprocess.id_site=='38VE0338') & (df_Rprocess.activ_humaine.isna()),['activ_humaine', 'position']] = ['Élevage / pastoralisme', 'ZH + EF']
df_Rprocess = pd.concat([df_Rprocess, d]).sort_values('id_site')
# '38VA0006' ADD ['Urbanisation', 'ZH']
d1 = df_Rprocess[(df_Rprocess.id_site=='38VA0006') & (df_Rprocess.activ_humaine.isna())].copy()
d2 = df_Rprocess[(df_Rprocess.id_site=='38VA0006') & (df_Rprocess.activ_humaine.isna())].copy()
d1[['activ_humaine', 'position']] = ['Pêche', 'ZH']
d2[['activ_humaine', 'position']] = ['Tourisme et loisirs (camping, zone de stationnement)', 'ZH']
df_Rprocess.loc[(df_Rprocess.id_site=='38VA0006') & (df_Rprocess.activ_humaine.isna()),['activ_humaine', 'position']] = ['Activité hydroélectrique, barrage', 'ZH']
df_Rprocess = pd.concat([df_Rprocess, d1,d2]).sort_values('id_site')
import pymedwet as pym
# Récupération du dictionnaire des impacts
df_imp = pym.medwet.__get_DicGenIMP__() \
.rename(columns={'CODE':'id','DESCR':'nom'})
df_impact = df_imp.copy()
df_impact.nom = df_impact.nom.str[0].str.upper() + df_impact.nom.str[1:]
# Incrémentation du dictionnaire des impacts
if not isin_bdd:
df_impact.to_sql(
name='param_impact',
con = con_zh,
schema='zones_humides',
index=False,
# index_label='id',
if_exists='append',
method='multi'
)
print("INSERT ... ok !")
# Récupération des impacts
df_imp = pd.read_sql_table(
table_name='param_impact',
con = con_zh,
schema='zones_humides',
columns=['id','nom']
)
med1 = pym.medwet.get_usage_process(pym.db_file1)
med2 = pym.medwet.get_usage_process(pym.db_file2)
med = pd.concat([med1, med2]).sort_values('SITE_COD')
med.ACTIVITE_HUM = med.ACTIVITE_HUM.str[0].str.upper() + med.ACTIVITE_HUM.str[1:].str.lower()
med.LOCALISATION = med.LOCALISATION.str[0].str.upper() + med.LOCALISATION.str[1:].str.lower()
med.LOCALISATION = med.LOCALISATION.replace(df_Ppostion.description.to_list(),df_Ppostion.nom.to_list())
merge_med = med[['SITE_COD', 'ACTIVITE_HUM','LOCALISATION', 'IMPACT']].copy() # 'ACTIV_TYPO'
# Merge usage_process - impact
df_Rprocess = pd.merge(df_Rprocess, merge_med,
left_on = ['id_site','activ_humaine','position'],
right_on = ['SITE_COD','ACTIVITE_HUM','LOCALISATION'],
how = 'left') \
.drop(columns=['SITE_COD','ACTIVITE_HUM','LOCALISATION']) \
.rename(columns={'IMPACT':'impact'})
# Ajout des impacts pour les zones
# '38RH0261'
df_Rprocess.loc[(df_Rprocess.id_site=='38RH0261') & (df_Rprocess.position=='ERROR') & (df_Rprocess.activ_humaine=="Élevage / pastoralisme"),
['impact', 'position']] = [ df_imp.loc[df_imp.id == '45.0','nom'].item() ,'EF']
# '38VE0281'
df_Rprocess.loc[(df_Rprocess.id_site=='38VE0281') & (df_Rprocess.position=='ERROR') & (df_Rprocess.activ_humaine=="Industrie"),
['impact', 'position']] = [ df_imp.loc[df_imp.id == '31.0','nom'].item() ,'ZH']
d1 = df_Rprocess.loc[(df_Rprocess.id_site=='38VE0281') & (df_Rprocess.activ_humaine=="Élevage / pastoralisme"),].copy()
d2 = d1.copy()
d1[['activ_humaine','impact','position']] = ["Élevage / pastoralisme", df_imp.loc[df_imp.id == '45.0','nom'].item() ,'EF']
d2[['activ_humaine','impact','rmq_activ_hum','position']] = ['Élevage / pastoralisme', df_imp.loc[df_imp.id == '46.0','nom'].item() ,'Fauche','EF']
df_Rprocess.loc[(df_Rprocess.id_site=='38VE0281') & (df_Rprocess.activ_humaine=="Élevage / pastoralisme"),
['rmq_activ_hum']] = ['Prairies labourées, resemées, pour parties les moins pentues']
df_Rprocess = pd.concat([df_Rprocess, d1, d2]).sort_values('id_site')
# '38VS0033'
df_Rprocess.drop(
df_Rprocess.loc[(df_Rprocess.id_site=='38VS0033') & (df_Rprocess.position=='ERROR') &
(df_Rprocess.activ_humaine=="Autre (préciser dans l'encart réservé aux remarques)")].index, inplace=True)
# '38QV0065'
df_Rprocess.loc[(df_Rprocess.id_site=='38QV0065') & (df_Rprocess.position=='ERROR') & (df_Rprocess.activ_humaine=="Sylviculture"),
['impact', 'position']] = [ df_imp.loc[df_imp.id == '54.0','nom'].item() ,'EF']
# '38MA0057'
df_Rprocess.loc[(df_Rprocess.id_site=='38MA0057') & (df_Rprocess.position=='ERROR') & (df_Rprocess.activ_humaine=="Sylviculture"),
['impact', 'position']] = [ df_imp.loc[df_imp.id == '54.0','nom'].item() ,'EF']
# '38FP0084'
df_Rprocess.loc[(df_Rprocess.id_site=='38FP0084') & (df_Rprocess.position=='ERROR') & (df_Rprocess.activ_humaine=="Autre (préciser dans l'encart réservé aux remarques)"),
['impact','activ_hum_autre', 'position']] = [ df_imp.loc[df_imp.id == '91.4','nom'].item() ,'Espèces invasives','ZH + EF']
# '38FP0081'
df_Rprocess.loc[(df_Rprocess.id_site=='38FP0081') & (df_Rprocess.position=='ERROR') &
(df_Rprocess.activ_humaine=="Autre (préciser dans l'encart réservé aux remarques)") & (df_Rprocess.rmq_activ_hum=="épandage de granules type NPK sur pâture"),
['impact','rmq_activ_hum', 'position']] = [ df_imp.loc[df_imp.id == '44.0','nom'].item() ,'Drainage','EF']
df_Rprocess.loc[(df_Rprocess.id_site=='38FP0081') & (df_Rprocess.position=='ERROR') &
(df_Rprocess.activ_humaine=="Autre (préciser dans l'encart réservé aux remarques)") & (df_Rprocess.rmq_activ_hum=="solidage"),
['impact','rmq_activ_hum', 'position']] = [ df_imp.loc[df_imp.id == '91.4','nom'].item() ,'Solidage','EF']
# '38FP0072'
df_Rprocess.loc[(df_Rprocess.id_site=='38FP0072') & (df_Rprocess.position=='ERROR') & (df_Rprocess.activ_humaine=="Autre (préciser dans l'encart réservé aux remarques)"),
['impact', 'position']] = [ df_imp.loc[df_imp.id == '46.0','nom'].item() ,'EF']
# '38FP0069'
df_Rprocess.loc[(df_Rprocess.id_site=='38FP0069') & (df_Rprocess.position=='ERROR') & (df_Rprocess.activ_humaine=="Autre (préciser dans l'encart réservé aux remarques)"),
['impact','rmq_activ_hum', 'position']] = [ df_imp.loc[df_imp.id == '34.0','nom'].item() ,'Remblais','EF']
# '38FP0067'
df_Rprocess.loc[(df_Rprocess.id_site=='38FP0067') & (df_Rprocess.position=='ERROR') & (df_Rprocess.activ_humaine=="Chasse"),
['impact', 'position']] = [ df_imp.loc[df_imp.id == '62.0','nom'].item() ,'ZH + EF']
# '38FP0065'
df_Rprocess.loc[(df_Rprocess.id_site=='38FP0065') & (df_Rprocess.position=='ERROR') &
(df_Rprocess.activ_humaine=="Autre (préciser dans l'encart réservé aux remarques)") & (df_Rprocess.rmq_activ_hum=="drainage"),
['impact','rmq_activ_hum', 'position']] = [ df_imp.loc[df_imp.id == '31.0','nom'].item() ,'Drainage','ZH']
df_Rprocess.loc[(df_Rprocess.id_site=='38FP0065') & (df_Rprocess.position=='ERROR') &
(df_Rprocess.activ_humaine=="Autre (préciser dans l'encart réservé aux remarques)") & (df_Rprocess.rmq_activ_hum=="solidage"),
['impact','rmq_activ_hum', 'position']] = [ df_imp.loc[df_imp.id == '91.4','nom'].item() ,'Solidage','ZH']
# '38GL0025'
df_Rprocess.loc[(df_Rprocess.id_site=='38GL0025') & (df_Rprocess.position=='ERROR') & (df_Rprocess.activ_humaine=="Prélèvements d'eau"),
['impact', 'position']] = [ df_imp.loc[df_imp.id == '36.0','nom'].item() ,'ZH']
# '38GL0024'
df_Rprocess.loc[(df_Rprocess.id_site=='38GL0024') & (df_Rprocess.position=='ERROR') & (df_Rprocess.activ_humaine=="Élevage / pastoralisme"),
['impact', 'position']] = [ df_imp.loc[df_imp.id == '45.0','nom'].item() ,'ZH + EF']
# '38GL0023'
df_Rprocess.loc[(df_Rprocess.id_site=='38GL0023') & (df_Rprocess.position=='ERROR') & (df_Rprocess.activ_humaine=="Élevage / pastoralisme"),
['impact', 'position']] = [ df_imp.loc[df_imp.id == '45.0','nom'].item() ,'ZH + EF']
df_Rprocess.loc[(df_Rprocess.id_site=='38GL0023') & (df_Rprocess.position=='ERROR') & (df_Rprocess.activ_humaine=="Tourisme et loisirs (camping, zone de stationnement)"),
['impact','rmq_activ_hum', 'position']] = [ df_imp.loc[df_imp.id == '30','nom'].item() ,'Ski de fond','ZH + EF']
df_Rprocess.loc[(df_Rprocess.id_site=='38GL0023') & (df_Rprocess.position=='ERROR') & (df_Rprocess.activ_humaine=="Autre (préciser dans l'encart réservé aux remarques)"),
['impact', 'position']] = [ df_imp.loc[df_imp.id == '15.0','nom'].item() ,'ZH + EF']
# '38GL0022'
df_Rprocess.loc[(df_Rprocess.id_site=='38GL0022') & (df_Rprocess.position=='ERROR') & (df_Rprocess.activ_humaine=="Agriculture"),
['impact', 'position']] = [ df_imp.loc[df_imp.id == '45.0','nom'].item() ,'ZH + EF']
df_Rprocess.loc[(df_Rprocess.id_site=='38GL0022') & (df_Rprocess.position=='ERROR') & (df_Rprocess.activ_humaine=="Tourisme et loisirs (camping, zone de stationnement)"),
['impact','rmq_activ_hum', 'position']] = [ df_imp.loc[df_imp.id == '30','nom'].item() ,'Ski','ZH + EF']
df_Rprocess.loc[(df_Rprocess.id_site=='38GL0022') & (df_Rprocess.position=='ERROR') & (df_Rprocess.activ_humaine=="Prélèvements d'eau"),
['impact','rmq_activ_hum', 'position']] = [ df_imp.loc[df_imp.id == '31.0','nom'].item() ,'Drainage','ZH + EF']
# '38GL0021'
df_Rprocess.loc[(df_Rprocess.id_site=='38GL0021') & (df_Rprocess.position=='ERROR') & (df_Rprocess.activ_humaine=="Agriculture"),
['impact', 'position']] = [ df_imp.loc[df_imp.id == '45.0','nom'].item() ,'ZH + EF']
# '38GL0020'
df_Rprocess.drop(
df_Rprocess.loc[(df_Rprocess.id_site=='38GL0020') & (df_Rprocess.position=='ERROR') & (df_Rprocess.activ_humaine=="Agriculture"),].index,
inplace=True)
# '38GL0019'
df_Rprocess.loc[(df_Rprocess.id_site=='38GL0019') & (df_Rprocess.position=='ERROR') & (df_Rprocess.activ_humaine=="Agriculture"),
['impact', 'position']] = [ df_imp.loc[df_imp.id == '45.0','nom'].item() ,'ZH + EF']
# '38DA0017'
df_Rprocess.loc[(df_Rprocess.id_site=='38DA0017') & (df_Rprocess.position=='ERROR') & (df_Rprocess.activ_humaine=="Pas d'activité marquante"),
['impact', 'position']] = [ df_imp.loc[df_imp.id == '0','nom'].item() ,'ZH + EF']
# '38DA0010'
df_Rprocess.loc[(df_Rprocess.id_site=='38DA0010') & (df_Rprocess.position=='ERROR') & (df_Rprocess.activ_humaine=="Pas d'activité marquante"),
['impact', 'position']] = [ df_imp.loc[df_imp.id == '0','nom'].item() ,'ZH + EF']
# '38CG0142'
df_Rprocess.loc[(df_Rprocess.id_site=='38CG0142') & (df_Rprocess.position=='ERROR') & (df_Rprocess.activ_humaine=="Prélèvements d'eau"),
['impact', 'position']] = [ df_imp.loc[df_imp.id == '36.0','nom'].item() ,'ZH']
# '38CG0135'
df_Rprocess.loc[(df_Rprocess.id_site=='38CG0135') & (df_Rprocess.position=='ERROR') & (df_Rprocess.activ_humaine=="Infrastructures linéaires (routes, voies ferrées)"),
['impact', 'position']] = [ df_imp.loc[df_imp.id == '53.0','nom'].item() ,'ZH + EF']
# '38CG0131'
df_Rprocess.loc[(df_Rprocess.id_site=='38CG0131') & (df_Rprocess.position=='ERROR') & (df_Rprocess.activ_humaine=="Chasse"),
['impact', 'position']] = [ df_imp.loc[df_imp.id == '13.0','nom'].item() ,'ZH + EF']
# '38CG0112'
df_Rprocess.loc[(df_Rprocess.id_site=='38CG0112') & (df_Rprocess.position=='ERROR') & (df_Rprocess.activ_humaine=="Sylviculture"),
['impact', 'position']] = [ df_imp.loc[df_imp.id == '62.0','nom'].item() ,'ZH + EF']
# '38BO0271'
df_Rprocess.drop(df_Rprocess.loc[(df_Rprocess.id_site=='38BO0271') & (df_Rprocess.position=='ERROR') &
(df_Rprocess.activ_humaine=="Autre (préciser dans l'encart réservé aux remarques)")].index, inplace=True)
# '38BI0127'
df_Rprocess.loc[(df_Rprocess.id_site=='38BI0127') & (df_Rprocess.position=='ERROR') & (df_Rprocess.activ_humaine=="Autre (préciser dans l'encart réservé aux remarques)"),
['activ_hum_autre','impact', 'position']] = ['Gestion privée', df_imp.loc[df_imp.id == '35.0','nom'].item() ,'ZH']
# 38RD0163
df_Rprocess.loc[
(df_Rprocess.id_site=='38RD0163') &
(df_Rprocess.activ_humaine =="Infrastructures linéaires (routes, voies ferrées)") &
(df_Rprocess.position == 'EF'),
'impact'] = df_imp.loc[df_imp.id == '13.0','nom'].item()
df_Rprocess.loc[
(df_Rprocess.id_site=='38RD0163') &
(df_Rprocess.activ_humaine =="Élevage / pastoralisme") &
(df_Rprocess.position == 'ZH + EF'),
'impact'] = df_imp.loc[df_imp.id == '45.0','nom'].item()
# df_Rprocess = pd.concat([df_Rprocess, d1,d2]).sort_values('id_site')
# 38RD0162
df_Rprocess.loc[
(df_Rprocess.id_site=='38RD0162') &
(df_Rprocess.activ_humaine =="Tourisme et loisirs (camping, zone de stationnement)") &
(df_Rprocess.position == 'ZH + EF'),
'impact'] = df_imp.loc[df_imp.id == '61.0','nom'].item()
# df_Rprocess = pd.concat([df_Rprocess, d1]).sort_values('id_site')
d1 = df_Rprocess.loc[
(df_Rprocess.id_site=='38RD0162') &
(df_Rprocess.activ_humaine =='Élevage / pastoralisme') &
(df_Rprocess.position == 'ZH + EF'),].copy()
d1['impact'] = df_imp.loc[df_imp.id == '21.0','nom'].item()
df_Rprocess.loc[
(df_Rprocess.id_site=='38RD0162') &
(df_Rprocess.activ_humaine =="Élevage / pastoralisme") &
(df_Rprocess.position == 'ZH + EF'),
'impact'] = df_imp.loc[df_imp.id == '45.0','nom'].item()
df_Rprocess = pd.concat([df_Rprocess, d1]).sort_values('id_site')
# 38RD0161
df_Rprocess.loc[
(df_Rprocess.id_site=='38RD0161') &
(df_Rprocess.activ_humaine =="Tourisme et loisirs (camping, zone de stationnement)") &
(df_Rprocess.position == 'ZH + EF'),
'impact'] = df_imp.loc[df_imp.id == '24.0','nom'].item()
df_Rprocess = pd.concat([df_Rprocess, d1]).sort_values('id_site')
df_Rprocess.loc[
(df_Rprocess.id_site=='38RD0161') &
(df_Rprocess.activ_humaine =="Élevage / pastoralisme") &
(df_Rprocess.position == 'ZH + EF'),
'impact'] = df_imp.loc[df_imp.id == '45.0','nom'].item()
# 38RD0159
d1 = df_Rprocess.loc[
(df_Rprocess.id_site=='38RD0159') &
(df_Rprocess.activ_humaine =='Élevage / pastoralisme') &
(df_Rprocess.position == 'ZH + EF'),].copy()
d2 = d1.copy()
d1['impact'] = df_imp.loc[df_imp.id == '45.0','nom'].item()
d2['impact'] = df_imp.loc[df_imp.id == '21.0','nom'].item()
df_Rprocess.loc[
(df_Rprocess.id_site=='38RD0159') &
(df_Rprocess.activ_humaine =="Élevage / pastoralisme") &
(df_Rprocess.position == 'ZH + EF'),
'impact'] = df_imp.loc[df_imp.id == '91.2','nom'].item()
df_Rprocess = pd.concat([df_Rprocess, d1,d2]).sort_values('id_site')
# 38RD0158
d1 = df_Rprocess.loc[
(df_Rprocess.id_site=='38RD0158') &
(df_Rprocess.activ_humaine =='Tourisme et loisirs (camping, zone de stationnement)') &
(df_Rprocess.position == 'ZH + EF'),].copy()
d1['impact'] = df_imp.loc[df_imp.id == '21.0','nom'].item()
df_Rprocess.loc[
(df_Rprocess.id_site=='38RD0158') &
(df_Rprocess.activ_humaine =="Tourisme et loisirs (camping, zone de stationnement)") &
(df_Rprocess.position == 'ZH + EF'),
'impact'] = df_imp.loc[df_imp.id == '22.0','nom'].item()
df_Rprocess = pd.concat([df_Rprocess, d1]).sort_values('id_site')
d1 = df_Rprocess.loc[
(df_Rprocess.id_site=='38RD0158') &
(df_Rprocess.activ_humaine =='Élevage / pastoralisme') &
(df_Rprocess.position == 'ZH + EF'),].copy()
d2 = d1.copy()
d1['impact'] = df_imp.loc[df_imp.id == '45.0','nom'].item()
d2['impact'] = df_imp.loc[df_imp.id == '21.0','nom'].item()
df_Rprocess.loc[
(df_Rprocess.id_site=='38RD0158') &
(df_Rprocess.activ_humaine =="Élevage / pastoralisme") &
(df_Rprocess.position == 'ZH + EF'),
'impact'] = df_imp.loc[df_imp.id == '91.2','nom'].item()
df_Rprocess = pd.concat([df_Rprocess, d1,d2]).sort_values('id_site')
# 38RD0157
df_Rprocess.loc[
(df_Rprocess.id_site=='38RD0157') &
(df_Rprocess.activ_humaine =="Infrastructures linéaires (routes, voies ferrées)") &
(df_Rprocess.position == 'ZH + EF'),
'impact'] = df_imp.loc[df_imp.id == '36.0','nom'].item()
d1 = df_Rprocess.loc[
(df_Rprocess.id_site=='38RD0157') &
(df_Rprocess.activ_humaine =='Élevage / pastoralisme') &
(df_Rprocess.position == 'ZH + EF'),].copy()
d2 = d1.copy()
d1['impact'] = df_imp.loc[df_imp.id == '45.0','nom'].item()
d2['impact'] = df_imp.loc[df_imp.id == '21.0','nom'].item()
df_Rprocess.loc[
(df_Rprocess.id_site=='38RD0157') &
(df_Rprocess.activ_humaine =="Élevage / pastoralisme") &
(df_Rprocess.position == 'ZH + EF'),
'impact'] = df_imp.loc[df_imp.id == '91.2','nom'].item()
df_Rprocess = pd.concat([df_Rprocess, d1,d2]).sort_values('id_site')
# 38RD0156
df_Rprocess.loc[
(df_Rprocess.id_site=='38RD0156') &
(df_Rprocess.activ_humaine =="Élevage / pastoralisme") &
(df_Rprocess.position == 'ZH + EF'),
'impact'] = df_imp.loc[df_imp.id == '45.0','nom'].item()
# 38RD0155
df_Rprocess.loc[
(df_Rprocess.id_site=='38RD0155') &
(df_Rprocess.activ_humaine =="Tourisme et loisirs (camping, zone de stationnement)") &
(df_Rprocess.position == 'ZH + EF'),
'impact'] = df_imp.loc[df_imp.id == '24.0','nom'].item()
df_Rprocess.loc[
(df_Rprocess.id_site=='38RD0155') &
(df_Rprocess.activ_humaine =="Élevage / pastoralisme") &
(df_Rprocess.position == 'ZH + EF'),
'impact'] = df_imp.loc[df_imp.id == '45.0','nom'].item()
# 38RD0153
df_Rprocess.loc[
(df_Rprocess.id_site=='38RD0153') &
(df_Rprocess.activ_humaine =="Élevage / pastoralisme") &
(df_Rprocess.position == 'ZH + EF'),
'impact'] = df_imp.loc[df_imp.id == '45.0','nom'].item()
# 38RD0152
d1 = df_Rprocess.loc[
(df_Rprocess.id_site=='38RD0152') &
(df_Rprocess.activ_humaine =='Tourisme et loisirs (camping, zone de stationnement)') &
(df_Rprocess.position == 'ZH + EF'),].copy()
d2 = d1.copy()
d1['impact'] = df_imp.loc[df_imp.id == '24.0','nom'].item()
d2['impact'] = df_imp.loc[df_imp.id == '21.0','nom'].item()
df_Rprocess.loc[
(df_Rprocess.id_site=='38RD0152') &
(df_Rprocess.activ_humaine =="Tourisme et loisirs (camping, zone de stationnement)") &
(df_Rprocess.position == 'ZH + EF'),
'impact'] = df_imp.loc[df_imp.id == '61.0','nom'].item()
df_Rprocess = pd.concat([df_Rprocess, d1,d2]).sort_values('id_site')
d1 = df_Rprocess.loc[
(df_Rprocess.id_site=='38RD0152') &
(df_Rprocess.activ_humaine =='Élevage / pastoralisme') &
(df_Rprocess.position == 'ZH + EF'),].copy()
d2 = d1.copy()
d1['impact'] = df_imp.loc[df_imp.id == '21.0','nom'].item()
d2['impact'] = df_imp.loc[df_imp.id == '45.0','nom'].item()
df_Rprocess.loc[
(df_Rprocess.id_site=='38RD0152') &
(df_Rprocess.activ_humaine =='Élevage / pastoralisme') &
(df_Rprocess.position == 'ZH + EF'),
'impact'] = df_imp.loc[df_imp.id == '24.0','nom'].item()
df_Rprocess = pd.concat([df_Rprocess, d1,d2]).sort_values('id_site')
df_Rprocess.loc[
(df_Rprocess.id_site=='38RD0152') &
(df_Rprocess.activ_humaine =="Urbanisation") &
(df_Rprocess.position == 'ZH + EF'),
'impact'] = df_imp.loc[df_imp.id == '11.0','nom'].item()
# 38RD0151
df_Rprocess.loc[
(df_Rprocess.id_site=='38RD0151') &
(df_Rprocess.activ_humaine =="Tourisme et loisirs (camping, zone de stationnement)") &
(df_Rprocess.position == 'ZH + EF'),
'impact'] = df_imp.loc[df_imp.id == '61.0','nom'].item()
d1 = df_Rprocess.loc[
(df_Rprocess.id_site=='38RD0151') &
(df_Rprocess.activ_humaine =='Élevage / pastoralisme') &
(df_Rprocess.position == 'ZH + EF'),].copy()
d2 = d1.copy()
d1['impact'] = df_imp.loc[df_imp.id == '21.0','nom'].item()
d2['impact'] = df_imp.loc[df_imp.id == '45.0','nom'].item()
df_Rprocess.loc[
(df_Rprocess.id_site=='38RD0151') &
(df_Rprocess.activ_humaine =='Élevage / pastoralisme') &
(df_Rprocess.position == 'ZH + EF'),
'impact'] = df_imp.loc[df_imp.id == '24.0','nom'].item()
df_Rprocess = pd.concat([df_Rprocess, d1,d2]).sort_values('id_site')
df_Rprocess.loc[
(df_Rprocess.id_site=='38RD0151') &
(df_Rprocess.activ_humaine =="Prélèvements d'eau") &
(df_Rprocess.position == 'ZH + EF'),
'impact'] = df_imp.loc[df_imp.id == '36.0','nom'].item()
# 38RD0150
d1 = df_Rprocess.loc[
(df_Rprocess.id_site=='38RD0150') &
(df_Rprocess.activ_humaine =='Élevage / pastoralisme') &
(df_Rprocess.position == 'ZH + EF'),].copy()
d2 = d1.copy()
d1['impact'] = df_imp.loc[df_imp.id == '21.0','nom'].item()
d2['impact'] = df_imp.loc[df_imp.id == '45.0','nom'].item()
df_Rprocess.loc[
(df_Rprocess.id_site=='38RD0150') &
(df_Rprocess.activ_humaine =='Élevage / pastoralisme') &
(df_Rprocess.position == 'ZH + EF'),
'impact'] = df_imp.loc[df_imp.id == '24.0','nom'].item()
df_Rprocess = pd.concat([df_Rprocess, d1,d2]).sort_values('id_site')
df_Rprocess.loc[
(df_Rprocess.id_site=='38RD0150') &
(df_Rprocess.activ_humaine =="Chasse") &
(df_Rprocess.position == 'ZH + EF'),
'impact'] = df_imp.loc[df_imp.id == '62.0','nom'].item()
# 38RD0149
df_Rprocess.loc[
(df_Rprocess.id_site=='38RD0149') &
(df_Rprocess.activ_humaine =='Tourisme et loisirs (camping, zone de stationnement)') &
(df_Rprocess.position == 'ZH + EF'),
'impact'] = df_imp.loc[df_imp.id == '61.0','nom'].item()
# 38RD0148
df_Rprocess.loc[
(df_Rprocess.id_site=='38RD0148') &
(df_Rprocess.activ_humaine =='Tourisme et loisirs (camping, zone de stationnement)') &
(df_Rprocess.position == 'ZH + EF'),
'impact'] = df_imp.loc[df_imp.id == '61.0','nom'].item()
df_Rprocess.loc[
(df_Rprocess.id_site=='38RD0148') &
(df_Rprocess.activ_humaine =="Chasse") &
(df_Rprocess.position == 'ZH + EF'),
'impact'] = df_imp.loc[df_imp.id == '62.0','nom'].item()
# 38VS0057
df_Rprocess.loc[
(df_Rprocess.id_site=='38VS0057') &
(df_Rprocess.activ_humaine =='Pêche') &
(df_Rprocess.position == 'ZH'),
'impact'] = df_imp.loc[df_imp.id == '63.0','nom'].item()
df_Rprocess.loc[
(df_Rprocess.id_site=='38VS0057') &
(df_Rprocess.activ_humaine =='Tourisme et loisirs (camping, zone de stationnement)') &
(df_Rprocess.position == 'EF'),
'impact'] = df_imp.loc[df_imp.id == '61.0','nom'].item()
df_Rprocess.loc[
(df_Rprocess.id_site=='38VS0057') &
(df_Rprocess.activ_humaine =='Urbanisation') &
(df_Rprocess.position == 'ZH + EF'),
'impact'] = df_imp.loc[df_imp.id == '11.0','nom'].item()
# 38VS0056
df_Rprocess.loc[
(df_Rprocess.id_site=='38VS0056') &
(df_Rprocess.activ_humaine =='Agriculture') &
(df_Rprocess.position == 'ZH + EF'),
'impact'] = df_imp.loc[df_imp.id == '41.0','nom'].item()
df_Rprocess.loc[
(df_Rprocess.id_site=='38VS0056') &
(df_Rprocess.activ_humaine =="Autre (préciser dans l'encart réservé aux remarques)") &
(df_Rprocess.position == 'ZH'),
'impact'] = df_imp.loc[df_imp.id == '34.0','nom'].item()
# 38VS0055
df_Rprocess.loc[
(df_Rprocess.id_site=='38VS0055') &
(df_Rprocess.activ_humaine =='Sylviculture') &
(df_Rprocess.position == 'ZH + EF'),
'impact'] = df_imp.loc[df_imp.id == '51.0','nom'].item()
df_Rprocess.loc[
(df_Rprocess.id_site=='38VS0055') &
(df_Rprocess.activ_humaine =='Pêche') &
(df_Rprocess.position == 'ZH'),
'impact'] = df_imp.loc[df_imp.id == '63.0','nom'].item()
df_Rprocess.loc[
(df_Rprocess.id_site=='38VS0055') &
(df_Rprocess.activ_humaine =='Tourisme et loisirs (camping, zone de stationnement)') &
(df_Rprocess.position == 'EF'),
'impact'] = df_imp.loc[df_imp.id == '16.0','nom'].item()
df_Rprocess.loc[
(df_Rprocess.id_site=='38VS0055') &
(df_Rprocess.activ_humaine =='Urbanisation') &
(df_Rprocess.position == 'ZH + EF'),
'impact'] = df_imp.loc[df_imp.id == '11.0','nom'].item()
# 38VS0054
df_Rprocess.loc[
(df_Rprocess.id_site=='38VS0054') &
(df_Rprocess.activ_humaine =='Agriculture') &
(df_Rprocess.position == 'EF'),
'impact'] = df_imp.loc[df_imp.id == '41.0','nom'].item()
df_Rprocess.loc[
(df_Rprocess.id_site=='38VS0054') &
(df_Rprocess.activ_humaine =='Sylviculture') &
(df_Rprocess.position == 'ZH'),
'impact'] = df_imp.loc[df_imp.id == '53.0','nom'].item()
df_Rprocess.loc[
(df_Rprocess.id_site=='38VS0054') &
(df_Rprocess.activ_humaine =='Pêche') &
(df_Rprocess.position == 'ZH'),
'impact'] = df_imp.loc[df_imp.id == '63.0','nom'].item()
df_Rprocess.loc[
(df_Rprocess.id_site=='38VS0054') &
(df_Rprocess.activ_humaine =='Chasse') &
(df_Rprocess.position == 'ZH + EF'),
'impact'] = df_imp.loc[df_imp.id == '62.0','nom'].item()
df_Rprocess.loc[
(df_Rprocess.id_site=='38VS0054') &
(df_Rprocess.activ_humaine =='Tourisme et loisirs (camping, zone de stationnement)') &
(df_Rprocess.position == 'ZH + EF'),
'impact'] = df_imp.loc[df_imp.id == '61.0','nom'].item()
df_Rprocess.loc[
(df_Rprocess.id_site=='38VS0054') &
(df_Rprocess.activ_humaine =="Prélèvements d'eau") &
(df_Rprocess.position == 'ZH'),
'impact'] = df_imp.loc[df_imp.id == '36.0','nom'].item()
# 38VS0053
df_Rprocess.loc[
(df_Rprocess.id_site=='38VS0053') &
(df_Rprocess.activ_humaine =='Agriculture') &
(df_Rprocess.position == 'ZH + EF'),
'impact'] = df_imp.loc[df_imp.id == '41.0','nom'].item()
d1 = df_Rprocess.loc[
(df_Rprocess.id_site=='38VS0053') &
(df_Rprocess.activ_humaine =='Urbanisation') &
(df_Rprocess.position == 'EF'),].copy()
d1['impact'] = df_imp.loc[df_imp.id == '11.0','nom'].item()
df_Rprocess.loc[
(df_Rprocess.id_site=='38VS0053') &
(df_Rprocess.activ_humaine =='Urbanisation') &
(df_Rprocess.position == 'EF'),
'impact'] = df_imp.loc[df_imp.id == '17.0','nom'].item()
df_Rprocess = pd.concat([df_Rprocess, d1]).sort_values('id_site')
df_Rprocess.loc[
(df_Rprocess.id_site=='38VS0053') &
(df_Rprocess.activ_humaine =='Infrastructures linéaires (routes, voies ferrées)') &
(df_Rprocess.position == 'EF'),
'impact'] = df_imp.loc[df_imp.id == '13.0','nom'].item()
df_Rprocess.loc[
(df_Rprocess.id_site=='38VS0053') &
(df_Rprocess.activ_humaine =="Autre (préciser dans l'encart réservé aux remarques)") &
(df_Rprocess.position == 'EF'),
'impact'] = df_imp.loc[df_imp.id == '15.0','nom'].item()
df_Rprocess.loc[
(df_Rprocess.id_site=='38VS0053') &
(df_Rprocess.activ_humaine =="Autre (préciser dans l'encart réservé aux remarques)") &
(df_Rprocess.position == 'ZH + EF'),
'impact'] = df_imp.loc[df_imp.id == '34.0','nom'].item()
# 38VS0052
d1 = df_Rprocess.loc[
(df_Rprocess.id_site=='38VS0052') &
(df_Rprocess.activ_humaine =='Agriculture') &
(df_Rprocess.position == 'EF'),].copy()
d1['impact'] = df_imp.loc[df_imp.id == '41.0','nom'].item()
df_Rprocess.loc[
(df_Rprocess.id_site=='38VS0052') &
(df_Rprocess.activ_humaine =='Agriculture') &
(df_Rprocess.position == 'EF'),
'impact'] = df_imp.loc[df_imp.id == '43.0','nom'].item()
df_Rprocess = pd.concat([df_Rprocess, d1]).sort_values('id_site')
df_Rprocess.loc[
(df_Rprocess.id_site=='38VS0052') &
(df_Rprocess.activ_humaine =='Sylviculture') &
(df_Rprocess.position == 'EF'),
'impact'] = df_imp.loc[df_imp.id == '53.0','nom'].item()
df_Rprocess.loc[
(df_Rprocess.id_site=='38VS0052') &
(df_Rprocess.activ_humaine =='Élevage / pastoralisme') &
(df_Rprocess.position == 'EF'),
'impact'] = df_imp.loc[df_imp.id == '45.0','nom'].item()
d1 = df_Rprocess.loc[
(df_Rprocess.id_site=='38VS0052') &
(df_Rprocess.activ_humaine =='Pêche') &
(df_Rprocess.position == 'ZH'),].copy()
d1['impact'] = df_imp.loc[df_imp.id == '73.0','nom'].item()
df_Rprocess.loc[
(df_Rprocess.id_site=='38VS0052') &
(df_Rprocess.activ_humaine =='Pêche') &
(df_Rprocess.position == 'ZH'),
'impact'] = df_imp.loc[df_imp.id == '63.0','nom'].item()
df_Rprocess = pd.concat([df_Rprocess, d1]).sort_values('id_site')
df_Rprocess.loc[
(df_Rprocess.id_site=='38VS0052') &
(df_Rprocess.activ_humaine =='Tourisme et loisirs (camping, zone de stationnement)') &
(df_Rprocess.position == 'ZH + EF'),
'impact'] = df_imp.loc[df_imp.id == '61.0','nom'].item()
df_Rprocess.loc[
(df_Rprocess.id_site=='38VS0052') &
(df_Rprocess.activ_humaine =='Urbanisation') &
(df_Rprocess.position == 'EF'),
'impact'] = df_imp.loc[df_imp.id == '11.0','nom'].item()
df_Rprocess.loc[
(df_Rprocess.id_site=='38VS0052') &
(df_Rprocess.activ_humaine =='Infrastructures linéaires (routes, voies ferrées)') &
(df_Rprocess.position == 'EF'),
'impact'] = df_imp.loc[df_imp.id == '13.0','nom'].item()
# 38VS0051
df_Rprocess.loc[
(df_Rprocess.id_site=='38VS0051') &
(df_Rprocess.activ_humaine =='Agriculture') &
(df_Rprocess.position == 'ZH + EF'),
'impact'] = df_imp.loc[df_imp.id == '41.0','nom'].item()
df_Rprocess.loc[
(df_Rprocess.id_site=='38VS0051') &
(df_Rprocess.activ_humaine =='Élevage / pastoralisme') &
(df_Rprocess.position == 'ZH + EF'),
'impact'] = df_imp.loc[df_imp.id == '45.0','nom'].item()
d1 = df_Rprocess.loc[
(df_Rprocess.id_site=='38VS0051') &
(df_Rprocess.activ_humaine =='Urbanisation') &
(df_Rprocess.position == 'EF'),].copy()
d1['impact'] = df_imp.loc[df_imp.id == '11.0','nom'].item()
df_Rprocess.loc[
(df_Rprocess.id_site=='38VS0051') &
(df_Rprocess.activ_humaine =='Urbanisation') &
(df_Rprocess.position == 'EF'),
'impact'] = df_imp.loc[df_imp.id == '17.0','nom'].item()
df_Rprocess = pd.concat([df_Rprocess, d1]).sort_values('id_site')
df_Rprocess.loc[
(df_Rprocess.id_site=='38VS0051') &
(df_Rprocess.activ_humaine =="Prélèvements d'eau") &
(df_Rprocess.position == 'ZH'),
'impact'] = df_imp.loc[df_imp.id == '36.0','nom'].item()
# 38VS0050
d1 = df_Rprocess.loc[
(df_Rprocess.id_site=='38VS0050') &
(df_Rprocess.activ_humaine =='Agriculture') &
(df_Rprocess.position == 'EF'),].copy()
d1['impact'] = df_imp.loc[df_imp.id == '41.0','nom'].item()
df_Rprocess.loc[
(df_Rprocess.id_site=='38VS0050') &
(df_Rprocess.activ_humaine =='Agriculture') &
(df_Rprocess.position == 'EF'),
'impact'] = df_imp.loc[df_imp.id == '47.4','nom'].item()
df_Rprocess = pd.concat([df_Rprocess, d1]).sort_values('id_site')
d1 = df_Rprocess.loc[
(df_Rprocess.id_site=='38VS0050') &
(df_Rprocess.activ_humaine =='Urbanisation') &
(df_Rprocess.position == 'EF'),].copy()
d1['impact'] = df_imp.loc[df_imp.id == '11.0','nom'].item()
df_Rprocess.loc[
(df_Rprocess.id_site=='38VS0050') &
(df_Rprocess.activ_humaine =='Urbanisation') &
(df_Rprocess.position == 'EF'),
'impact'] = df_imp.loc[df_imp.id == '17.0','nom'].item()
df_Rprocess = pd.concat([df_Rprocess, d1]).sort_values('id_site')
d1 = df_Rprocess.loc[
(df_Rprocess.id_site=='38VS0050') &
(df_Rprocess.activ_humaine =='Infrastructures linéaires (routes, voies ferrées)') &
(df_Rprocess.position == 'ZH + EF'),].copy()
d1['impact'] = df_imp.loc[df_imp.id == '13.0','nom'].item()
df_Rprocess.loc[
(df_Rprocess.id_site=='38VS0050') &
(df_Rprocess.activ_humaine =='Infrastructures linéaires (routes, voies ferrées)') &
(df_Rprocess.position == 'ZH + EF'),
'impact'] = df_imp.loc[df_imp.id == '21.0','nom'].item()
df_Rprocess = pd.concat([df_Rprocess, d1]).sort_values('id_site')
# 38VS0049
df_Rprocess.loc[
(df_Rprocess.id_site=='38VS0049') &
(df_Rprocess.activ_humaine =='Agriculture') &
(df_Rprocess.position == 'ZH + EF'),
'impact'] = df_imp.loc[df_imp.id == '41.0','nom'].item()
df_Rprocess.loc[
(df_Rprocess.id_site=='38VS0049') &
(df_Rprocess.activ_humaine =='Élevage / pastoralisme') &
(df_Rprocess.position == 'ZH + EF'),
['impact','rmq_activ_hum']] = [df_imp.loc[df_imp.id == '45.0','nom'].item(), 'Equin']
df_Rprocess.loc[
(df_Rprocess.id_site=='38VS0049') &
(df_Rprocess.activ_humaine =='Pêche') &
(df_Rprocess.position == 'ZH'),
'impact'] = df_imp.loc[df_imp.id == '63.0','nom'].item()
df_Rprocess.loc[
(df_Rprocess.id_site=='38VS0049') &
(df_Rprocess.activ_humaine =='Industrie') &
(df_Rprocess.position == 'EF'),
'impact'] = df_imp.loc[df_imp.id == '12.0','nom'].item()
df_Rprocess.loc[
(df_Rprocess.id_site=='38VS0049') &
(df_Rprocess.activ_humaine =='Infrastructures linéaires (routes, voies ferrées)') &
(df_Rprocess.position == 'EF'),
'impact'] = df_imp.loc[df_imp.id == '13.0','nom'].item()
d1 = df_Rprocess.loc[
(df_Rprocess.id_site=='38VS0049') &
(df_Rprocess.activ_humaine =='Sylviculture') &
(df_Rprocess.position == 'ZH + EF'),].copy()
d2 = d1.copy()
d1['impact'] = df_imp.loc[df_imp.id == '51.0','nom'].item()
d2['impact'] = df_imp.loc[df_imp.id == '53.0','nom'].item()
df_Rprocess.loc[
(df_Rprocess.id_site=='38VS0049') &
(df_Rprocess.activ_humaine =='Sylviculture') &
(df_Rprocess.position == 'ZH + EF'),
'impact'] = df_imp.loc[df_imp.id == '55.0','nom'].item()
df_Rprocess = pd.concat([df_Rprocess, d1,d2]).sort_values('id_site')
d1 = df_Rprocess.loc[
(df_Rprocess.id_site=='38VS0049') &
(df_Rprocess.activ_humaine =='Tourisme et loisirs (camping, zone de stationnement)') &
(df_Rprocess.position == 'ZH'),].copy()
d2 = d1.copy()
d3 = d1.copy()
d1['impact'] = df_imp.loc[df_imp.id == '16.0','nom'].item()
d2['impact'] = df_imp.loc[df_imp.id == '32.0','nom'].item()
d3['impact'] = df_imp.loc[df_imp.id == '61.0','nom'].item()
df_Rprocess.loc[
(df_Rprocess.id_site=='38VS0049') &
(df_Rprocess.activ_humaine =='Tourisme et loisirs (camping, zone de stationnement)') &
(df_Rprocess.position == 'ZH'),
'impact'] = df_imp.loc[df_imp.id == '73.0','nom'].item()
df_Rprocess = pd.concat([df_Rprocess, d1,d2,d3]).sort_values('id_site')
d1 = df_Rprocess.loc[
(df_Rprocess.id_site=='38VS0049') &
(df_Rprocess.activ_humaine =='Urbanisation') &
(df_Rprocess.position == 'ZH + EF'),].copy()
d2 = d1.copy()
d3 = d1.copy()
d1['impact'] = df_imp.loc[df_imp.id == '11.0','nom'].item()
d2['impact'] = df_imp.loc[df_imp.id == '15.0','nom'].item()
d3['impact'] = df_imp.loc[df_imp.id == '34.0','nom'].item()
df_Rprocess.loc[
(df_Rprocess.id_site=='38VS0049') &
(df_Rprocess.activ_humaine =='Urbanisation') &
(df_Rprocess.position == 'ZH + EF'),
'impact'] = df_imp.loc[df_imp.id == '17.0','nom'].item()
df_Rprocess = pd.concat([df_Rprocess, d1,d2,d3]).sort_values('id_site')
d1 = df_Rprocess.loc[
(df_Rprocess.id_site=='38VS0049') &
(df_Rprocess.activ_humaine =="Autre (préciser dans l'encart réservé aux remarques)") &
(df_Rprocess.position == 'ZH'),].copy()
d1['impact'] = df_imp.loc[df_imp.id == '34.0','nom'].item()
df_Rprocess.loc[
(df_Rprocess.id_site=='38VS0049') &
(df_Rprocess.activ_humaine =="Autre (préciser dans l'encart réservé aux remarques)") &
(df_Rprocess.position == 'ZH'),
['impact','rmq_activ_hum']] = [df_imp.loc[df_imp.id == '15.0','nom'].item(), 'Plusieurs remblaiement constatés']
df_Rprocess = pd.concat([df_Rprocess, d1]).sort_values('id_site')
# 38VS0048
d = df_Rprocess.loc[
(df_Rprocess.id_site=='38VS0048') &
(df_Rprocess.activ_humaine =='Urbanisation') &
(df_Rprocess.position == 'EF'),].copy()
d['impact'] = df_imp.loc[df_imp.id == '11.0','nom'].item()
df_Rprocess.loc[
(df_Rprocess.id_site=='38VS0048') &
(df_Rprocess.activ_humaine =='Urbanisation') &
(df_Rprocess.position == 'EF'),
'impact'] = df_imp.loc[df_imp.id == '15.0','nom'].item()
df_Rprocess = pd.concat([df_Rprocess, d]).sort_values('id_site')
d = df_Rprocess.loc[
(df_Rprocess.id_site=='38VS0048') &
(df_Rprocess.activ_humaine =="Autre (préciser dans l'encart réservé aux remarques)") &
(df_Rprocess.position == 'EF'),].copy()
d['impact'] = df_imp.loc[df_imp.id == '91.2','nom'].item()
df_Rprocess.loc[
(df_Rprocess.id_site=='38VS0048') &
(df_Rprocess.activ_humaine =="Autre (préciser dans l'encart réservé aux remarques)") &
(df_Rprocess.position == 'EF'),
'impact'] = df_imp.loc[df_imp.id == '91.4','nom'].item()
df_Rprocess = pd.concat([df_Rprocess, d]).sort_values('id_site')
df_Rprocess.loc[
(df_Rprocess.id_site=='38VS0048') &
(df_Rprocess.activ_humaine =="Industrie") &
(df_Rprocess.position == 'EF'),
'impact'] = df_imp.loc[df_imp.id == '12.0','nom'].item()
df_Rprocess.loc[
(df_Rprocess.id_site=='38VS0048') &
(df_Rprocess.activ_humaine =="Infrastructures linéaires (routes, voies ferrées)") &
(df_Rprocess.position == 'EF'),
'impact'] = df_imp.loc[df_imp.id == '13.0','nom'].item()
# 38VS0047
df_Rprocess.loc[
(df_Rprocess.id_site=='38VS0047') &
(df_Rprocess.activ_humaine =='Élevage / pastoralisme') &
(df_Rprocess.position == 'ZH + EF'),
'impact'] = df_imp.loc[df_imp.id == '45.0','nom'].item()
df_Rprocess.loc[
(df_Rprocess.id_site=='38VS0047') &
(df_Rprocess.activ_humaine =='Agriculture') &
(df_Rprocess.position == 'EF'),
'impact'] = df_imp.loc[df_imp.id == '41.0','nom'].item()
# 38VS0046
d = df_Rprocess.loc[
(df_Rprocess.id_site=='38VS0046') &
(df_Rprocess.activ_humaine =='Agriculture') &
(df_Rprocess.position == 'ZH + EF'),].copy()
d['impact'] = df_imp.loc[df_imp.id == '17.0','nom'].item()
df_Rprocess.loc[
(df_Rprocess.id_site=='38VS0046') &
(df_Rprocess.activ_humaine =='Agriculture') &
(df_Rprocess.position == 'ZH + EF'),
'impact'] = df_imp.loc[df_imp.id == '45.0','nom'].item()
df_Rprocess = pd.concat([df_Rprocess, d]).sort_values('id_site')
df_Rprocess.loc[
(df_Rprocess.id_site=='38VS0046') &
(df_Rprocess.activ_humaine =='Urbanisation') &
(df_Rprocess.position == 'EF'),
'impact'] = df_imp.loc[df_imp.id == '11.0','nom'].item()
df_Rprocess.loc[
(df_Rprocess.id_site=='38VS0046') &
(df_Rprocess.activ_humaine =="Autre (préciser dans l'encart réservé aux remarques)") &
(df_Rprocess.position == 'EF'),
'impact'] = df_imp.loc[df_imp.id == '81.0','nom'].item()
# 38RD0128
df_Rprocess.loc[
(df_Rprocess.id_site=='38RD0128') &
(df_Rprocess.activ_humaine =='Élevage / pastoralisme') &
(df_Rprocess.position == 'ZH + EF'),
'impact'] = df_imp.loc[df_imp.id == '45.0','nom'].item()
df_Rprocess.loc[
(df_Rprocess.id_site=='38RD0128') &
(df_Rprocess.activ_humaine =='Chasse') &
(df_Rprocess.position == 'ZH + EF'),
'impact'] = df_imp.loc[df_imp.id == '62.0','nom'].item()
# 38RD0165
df_Rprocess.loc[
(df_Rprocess.id_site=='38RD0165') &
(df_Rprocess.activ_humaine =='Infrastructures linéaires (routes, voies ferrées)') &
(df_Rprocess.position == 'EF'),
['impact','rmq_activ_hum']] = [df_imp.loc[df_imp.id == '13.0','nom'].item(), 'D526']
df_Rprocess.loc[
(df_Rprocess.id_site=='38RD0165') &
(df_Rprocess.activ_humaine =='Extraction de granulats, mines') &
(df_Rprocess.position == 'ZH'),
['impact','rmq_activ_hum']] = [df_imp.loc[df_imp.id == '34.0','nom'].item(), 'Extraction de gravats']
df_Rprocess.loc[
(df_Rprocess.id_site=='38RD0165') &
(df_Rprocess.activ_humaine =='Activité hydroélectrique, barrage') &
(df_Rprocess.position == 'ZH'),
['impact','rmq_activ_hum']] = [df_imp.loc[df_imp.id == '11.0','nom'].item(), 'Barrage']
# 38RH0292
df_Rprocess.loc[
(df_Rprocess.id_site=='38RH0292') &
(df_Rprocess.activ_humaine =='Agriculture') &
(df_Rprocess.position == 'ZH'),
['impact','rmq_activ_hum']] = [df_imp.loc[df_imp.id == '41.0','nom'].item(), 'Maïs']
df_Rprocess.loc[
(df_Rprocess.id_site=='38RH0292') &
(df_Rprocess.activ_humaine =='Élevage / pastoralisme') &
(df_Rprocess.position == 'ZH + EF'),
['impact','rmq_activ_hum']] = [df_imp.loc[df_imp.id == '41.0','nom'].item(), 'Equin']
df_Rprocess.loc[
(df_Rprocess.id_site=='38RH0292') &
(df_Rprocess.activ_humaine =='Urbanisation') &
(df_Rprocess.position == 'ZH'),
['impact','rmq_activ_hum']] = [df_imp.loc[df_imp.id == '11.0','nom'].item(), 'Camping, maison']
df_Rprocess.loc[
(df_Rprocess.id_site=='38RH0292') &
(df_Rprocess.activ_humaine =='Tourisme et loisirs (camping, zone de stationnement)') &
(df_Rprocess.position == 'ZH'),
['impact','rmq_activ_hum']] = [df_imp.loc[df_imp.id == '16.0','nom'].item(), "Paintball, parcours sur câble"]
df_Rprocess.loc[
(df_Rprocess.id_site=='38RH0292') &
(df_Rprocess.activ_humaine =="Infrastructures linéaires (routes, voies ferrées)") &
(df_Rprocess.position == 'ZH + EF'),
['impact','rmq_activ_hum']] = [df_imp.loc[df_imp.id == '13.0','nom'].item(), 'Routes']
df_Rprocess.loc[
(df_Rprocess.id_site=='38RH0292') &
(df_Rprocess.activ_humaine =="Autre (préciser dans l'encart réservé aux remarques)") &
(df_Rprocess.position == 'ZH'),
'impact'] = df_imp.loc[df_imp.id == '31.0','nom'].item()
# 38CG0110
df_Rprocess.loc[
(df_Rprocess.id_site=='38CG0110') &
(df_Rprocess.activ_humaine =='Agriculture') &
(df_Rprocess.position == 'ZH'),
'impact'] = df_imp.loc[df_imp.id == '41.0','nom'].item()
df_Rprocess.loc[
(df_Rprocess.id_site=='38CG0110') &
(df_Rprocess.activ_humaine =='Chasse') &
(df_Rprocess.position == 'EF'),
'impact'] = df_imp.loc[df_imp.id == '62.0','nom'].item()
df_Rprocess.loc[
(df_Rprocess.id_site=='38CG0110') &
(df_Rprocess.activ_humaine =='Tourisme et loisirs (camping, zone de stationnement)') &
(df_Rprocess.position == 'EF'),
['impact','rmq_activ_hum']] = [df_imp.loc[df_imp.id == '61.0','nom'].item(), "Tir à l'arc"]
df_Rprocess.loc[
(df_Rprocess.id_site=='38CG0110') &
(df_Rprocess.activ_humaine =="Prélèvements d'eau") &
(df_Rprocess.position == 'ZH + EF'),
['impact','rmq_activ_hum']] = [df_imp.loc[df_imp.id == '30','nom'].item(), 'Irrigation']
# 38BO0058
df_Rprocess.loc[
(df_Rprocess.id_site=='38BO0058') &
(df_Rprocess.activ_humaine =='Agriculture') &
(df_Rprocess.position == 'ZH + EF'),
'impact'] = df_imp.loc[df_imp.id == '41.0','nom'].item()
df_Rprocess.loc[
(df_Rprocess.id_site=='38BO0058') &
(df_Rprocess.activ_humaine =='Pêche') &
(df_Rprocess.position == 'ZH'),
'impact'] = df_imp.loc[df_imp.id == '63.0','nom'].item()
df_Rprocess.loc[
(df_Rprocess.id_site=='38BO0058') &
(df_Rprocess.activ_humaine =='Urbanisation') &
(df_Rprocess.position == 'EF'),
'impact'] = df_imp.loc[df_imp.id == '11.0','nom'].item()
df_Rprocess.loc[
(df_Rprocess.id_site=='38BO0058') &
(df_Rprocess.activ_humaine =='Infrastructures linéaires (routes, voies ferrées)') &
(df_Rprocess.position == 'EF'),
'impact'] = df_imp.loc[df_imp.id == '13.0','nom'].item()
# 38VE0331
df_Rprocess.loc[
(df_Rprocess.id_site=='38VE0331') &
(df_Rprocess.activ_humaine =='Agriculture') &
(df_Rprocess.position == 'ZH + EF'),
'impact'] = df_imp.loc[df_imp.id == '41.0','nom'].item()
df_Rprocess.loc[
(df_Rprocess.id_site=='38VE0331') &
(df_Rprocess.activ_humaine =='Élevage / pastoralisme') &
(df_Rprocess.position == 'ZH + EF'),
'impact'] = df_imp.loc[df_imp.id == '45.0','nom'].item()
df_Rprocess.loc[
(df_Rprocess.id_site=='38VE0331') &
(df_Rprocess.activ_humaine =='Infrastructures linéaires (routes, voies ferrées)') &
(df_Rprocess.position == 'ZH + EF'),
'impact'] = df_imp.loc[df_imp.id == '31.0','nom'].item()
# 38VE0338
df_Rprocess.loc[
(df_Rprocess.id_site=='38VE0338') &
(df_Rprocess.activ_humaine =='Infrastructures linéaires (routes, voies ferrées)') &
(df_Rprocess.position == 'ZH + EF'),
'impact'] = df_imp.loc[df_imp.id == '13.0','nom'].item()
# 38VE0345
d = df_Rprocess.loc[
(df_Rprocess.id_site=='38VE0345') &
(df_Rprocess.activ_humaine =='Agriculture') &
(df_Rprocess.position == 'ZH + EF'),
'impact'].copy()
d['impact'] = df_imp.loc[df_imp.id == '31.0','nom'].item()
df_Rprocess.loc[
(df_Rprocess.id_site=='38VE0345') &
(df_Rprocess.activ_humaine =='Agriculture') &
(df_Rprocess.position == 'ZH + EF'),
'impact'] = df_imp.loc[df_imp.id == '41.0','nom'].item()
df_Rprocess.loc[
(df_Rprocess.id_site=='38VE0345') &
(df_Rprocess.activ_humaine =='Élevage / pastoralisme') &
(df_Rprocess.position == 'ZH + EF'),
'impact'] = df_imp.loc[df_imp.id == '45.0','nom'].item()
df_Rprocess.loc[
(df_Rprocess.id_site=='38VE0345') &
(df_Rprocess.activ_humaine =='Infrastructures linéaires (routes, voies ferrées)') &
(df_Rprocess.position == 'EF'),
'impact'] = df_imp.loc[df_imp.id == '13.0','nom'].item()
df_Rprocess.loc[
(df_Rprocess.id_site=='38VE0345') &
(df_Rprocess.activ_humaine =="Autre (préciser dans l'encart réservé aux remarques)") &
(df_Rprocess.position == 'ZH + EF'),
'impact'] = df_imp.loc[df_imp.id == '15.0','nom'].item()
df_Rprocess.loc[df_Rprocess.activ_humaine=="Pas d'activité marquante",'impact'] = df_imp.loc[df_imp.id == '0','nom'].item()
# Remplacement des valeurs par leurs identifiants
df_Rprocess['id_position'] = df_Rprocess.position.replace(df_Ppostion.nom.to_list(),df_Ppostion.index.to_list())
df_Rprocess['id_activ_hum'] = df_Rprocess.activ_humaine.replace(df_ActHum.nom.to_list(),df_ActHum.id.to_list())
df_Rprocess.impact = df_Rprocess.impact.str.lower()
df_Rprocess['id_impact'] = df_Rprocess.impact.replace(df_imp.nom.str.lower().to_list(),df_imp.id.to_list())
df_Rprocess.drop(columns=['id_site', 'activ_humaine', 'position','impact'], inplace=True)
df_Rprocess.rename(
columns = {'rmq_activ_hum': 'remarques'},
inplace = True
)
df_Rprocess.reset_index(drop=True, inplace=True)
df_Rprocess.dropna(subset=['id_activ_hum'], inplace=True)
df_Rprocess.id_activ_hum = df_Rprocess.id_activ_hum.astype(int)
df_Rprocess.id_position = df_Rprocess.id_position.astype(int)
# Incrémentation des usages et process
if not isin_bdd:
df_Rprocess.to_sql(
name='r_site_usageprocess',
con = con_zh,
schema='zones_humides',
index=True,
index_label='id',
if_exists='append',
method='multi'
)
print("INSERT ... ok !")
# df_Rprocess.loc[~df_Rprocess.activ_hum_autre.isna(),['id_site','rmq_activ_hum','activ_hum_autre']]
# df_Rprocess.loc[~(
# (df_Rprocess.activ_humaine == df_Rprocess.ACTIV_TYPO) | (df_Rprocess.activ_hum_autre == df_Rprocess.ACTIV_TYPO) | df_Rprocess.ACTIV_TYPO.isna())
# , ['id_geom_site','id_site','activ_hum_autre','ACTIV_TYPO']] = None
# Recherche des 'activité autres' spécifiée dans medwet et non précisée dans zh
# lst_zhsit = df_Rprocess[~df_Rprocess.activ_hum_autre.isna()].id_site.tolist()
# tmp = med1[~med1.ACTIV_TYPO.eq(med1.ACTIVITE_HUM) & (~med1.ACTIV_TYPO.isna()) & (~med1.SITE_COD.isin(lst_zhsit))]
# df_Rprocess.loc[
# (df_Rprocess.id_site.isin(tmp.SITE_COD)) &
# (df_Rprocess.activ_humaine == df_ActHum.loc[df_ActHum.id==21, 'nom'].values[0])
# , :]
# , 'activ_hum_autre']
# df_Rprocess[df_Rprocess.activ_humaine.isna()].sort_values('id_site')
# df_Rprocess[df_Rprocess.id_site=='38VE0331']
# dc[dc.CODE=='13.0'].DESCR
# '38RD0023' ==> ????? Ne sait pas où c'est ...
# '38RD0126' ==> ????? Ne sait pas où c'est ...
# '38VE0227' ==> Disparue en 2021
# '38VE0331' ==> Inconnu
# '38VE0338' ==> Inconnu
# '38VE0344' ==> Inconnu
# '38VE0345' ==> Inconnu
# '38VA0006' ==> Dilemme : BDD = "Pas d'activité marquante" / Fiche = "Activité hydroélectrique, barrage"
######## NOT NaN IN activ_humaine FOR NEXT ---> ###########
df_Rprocess.position.replace(df_Ppostion.nom.to_list(),df_Ppostion.index.to_list(), inplace=True)
df_Rprocess.activ_humaine.replace(df_ActHum.nom.to_list(),df_ActHum.id.to_list(), inplace=True)
df_Rprocess.impact.replace(df_imp.nom.to_list(),df_imp.id.to_list(), inplace=True)
######## WHAT activ_hum_autre ??? FOR NEXT ---> ###########
if not isin_bdd:
df_Rprocess.to_sql(
name='r_site_usageprocess',
con = con_zh,
schema='zones_humides',
index=True,
index_label='id',
if_exists='append',
)
print("INSERT ... ok !")
df_Rprocess[['usages_process', 'description']] = df_Rprocess['usages_process_natu'].str.split('\(', expand=True)
df_Rprocess['description'] = df_Rprocess['description'].str.replace('\)','', regex=True)
# Récupération des descriptions d'usages
process_describ = df_Rprocess.loc[~df_Rprocess.description.isna(), ['usages_process','description']]
process_describ['usages_process'] = process_describ['usages_process'].str.strip()
process_describ['description'] = process_describ['description'].str.strip()
process_describ['usages_process'] = process_describ['usages_process'].str[0].str.upper() + process_describ['usages_process'].str[1:].str.lower()
process_describ.drop_duplicates(inplace=True)
del df_Rprocess['description']
del df_Rprocess['usages_process_natu']
tmp = ['tourisme et loisirs', 'aérodrome, aéroport, héliport', 'extraction de granulats, mines', 'activité hydroélectrique, barrage']
d = df_Rprocess[['usages_process']]
splt = '|'.join([',', ' et '])
dd = d[~d.usages_process.str.lower().str.contains('|'.join(tmp))]
dd = dd.usages_process.str.split(splt).apply(pd.Series).stack()
d = pd.concat(
[d[d.usages_process.str.lower().str.contains('|'.join(tmp))],
pd.DataFrame(dd, columns=['usages_process'], index=dd.index).droplevel(1) ]
).sort_index()
del df_Rprocess['usages_process']
df_Rprocess = df_Rprocess.merge(d, on='id',how='left')
for col in df_Rprocess.columns:
if col != 'id_geom_site':
df_Rprocess[col] = df_Rprocess[col].str.strip()
df_Rprocess['usages_process'] = df_Rprocess['usages_process'].str[0].str.upper() + df_Rprocess['usages_process'].str[1:].str.lower()
df_Rprocess.drop_duplicates(inplace=True)
df_Rprocess.dropna(subset=['usages_process'], inplace=True)
df_Rprocess.reset_index(inplace=True)
df_Rprocess = df_Rprocess.groupby(['id','id_geom_site', 'usages_process', 'position'])['rmq_activ_hum'].apply(' '.join).str.strip()
df_Rprocess.replace(' ', ', ', inplace=True, regex=True)
df_Rprocess = df_Rprocess.reset_index(['id_geom_site', 'usages_process', 'position'])
df_Rprocess['description'] = None
for i, row in process_describ.iterrows():
df_Rprocess.loc[df_Rprocess.usages_process == row.usages_process,'description'] = row.description
df_Rprocess.usages_process.replace(
['Dépots', 'Dépôt sauvage', 'Atterissement', "Entretien plan d'eau", "Création plan d'eau", 'Déchèterie communale' ,"Canalisation d'eau", 'Surpiétinement'],
['Dépôts', 'Dépôts sauvages', 'Atterrissement', "Entretien de plan d'eau", "Création de plan d'eau", 'Déchèterie', 'Canalisation', 'Piétinement'],
regex=True,
inplace=True
)
df_Rprocess.usages_process.replace(['Canalisation', 'Step'], ["Canalisation d'eau", 'STEP'],
regex=True, inplace=True
)
df_Rprocess.impact.replace(
[', ,'], [', '],
regex=True, inplace=True
)
df_Rprocess.impact.replace({'':None}, inplace=True)
df_Rprocess.reset_index(inplace=True, drop=True)
df_Rprocess.index.name = 'id'
# Loop who slow code ...
for i, row in df_Rprocess[df_Rprocess.impact.isna()].iterrows():
# if row.id_geom_site==18:
# break
tmp = df_Rprocess.loc[(df_Rprocess.usages_process == row.usages_process) & (df_Rprocess.id_geom_site == row.id_geom_site) & (df_Rprocess.index != row.name)]
if not tmp.empty:
df_Rprocess.drop(row.name, inplace=True)
df_Rprocess.reset_index(inplace=True, drop=True)
df_Rprocess.index.name = 'id'
# df_Rprocess.loc[df_Rprocess.usages_process.str.contains("égout"), ['id_geom_site','usages_process', 'rmq_activ_hum', 'position']]
# Récupération de la liste des usages et process
df_process = pd.DataFrame(
{
'nom': df_Rprocess['usages_process'],
'description': df_Rprocess['description']
},
index = df_Rprocess[['usages_process', 'description']].index)
df_process.drop_duplicates(inplace=True)
df_process.sort_values('nom', inplace=True)
df_process.reset_index(inplace=True, drop=True)
df_process.index.name = 'id'
# Incrémentation des usages et process
# if not isin_bdd:
# df_process.to_sql(
# name='param_usageprocess',
# con = con_zh,
# schema='zones_humides',
# index=True,
# index_label='id',
# if_exists='append',
# )
# print("INSERT ... ok !")
# # Mise en forme des relations sites / usages et process
# df_Rprocess.position.replace(df_Ppostion.nom.to_list(),df_Ppostion.index.to_list(), inplace=True)
# df_Rprocess.usages_process.replace(df_process.nom.to_list(),df_process.index.to_list(), inplace=True)
# df_Rprocess.reset_index(inplace=True, drop=True)
# df_Rprocess.index.name = 'id'
# Incrémentation des relations sites / usages et process
# if not isin_bdd:
# df_Rprocess.to_sql(
# name='r_site_usageprocess',
# con = con_zh,
# schema='zones_humides',
# index=True,
# index_label='id',
# if_exists='append',
# )
# print("INSERT ... ok !")
d = df_process.copy()
d['nom'] = df_process['nom'].str.lower()
d
df_process = d
df_process.reset_index(drop=True, inplace=True)
df_process.index.name = 'id'
df_process[['nom','description']] = df_process['nom'].str.split('\(', expand=True)
df_process['nom'] = df_process['nom'].str.strip()
df_process['description'] = df_process['description'].str.replace('\)','', regex=True).str.strip()
d = df_process['nom'].str.split(' et ').apply(pd.Series).stack()
d = pd.DataFrame(d, columns=['nom'])
d.index.name = 'id'
del df_process['nom']
df_process = df_process.merge(d, on='id',how='left')
df_process['nom'] = df_process['nom'].str[0].str.upper() + df_process['nom'].str[1:]
df_process.drop_duplicates(inplace=True)
d = d['nom'].str.split([' et ']).apply(pd.Series).stack()
if not isin_bdd:
df_critDelm.to_sql(
name='r_site_usageprocess',
con = con_zh,
schema='zones_humides',
index=True,
index_label='id',
if_exists='append',
)
print("INSERT ... ok !")