432 lines
13 KiB
Python
432 lines
13 KiB
Python
import geopandas as gpd
|
|
from uuid import uuid4
|
|
import json,urllib.request
|
|
from numpy import ndarray
|
|
|
|
dict_columns = {
|
|
'code_zh': 'code',
|
|
'nom_zh': 'main_name',
|
|
'date_visite':'create_date',
|
|
}
|
|
|
|
|
|
def get_nomenclature_id(con,cd,typ):
|
|
"""
|
|
Get the id_nomenclature for a given cd and typ.
|
|
|
|
Parameters
|
|
----------
|
|
con : sqlalchemy.engine.Engine
|
|
The database connection.
|
|
cd : str
|
|
The code of the nomenclature.
|
|
typ : str
|
|
The type of the nomenclature.
|
|
|
|
Returns
|
|
-------
|
|
int or None
|
|
The id of the nomenclature or None if the nomenclature does not exist.
|
|
"""
|
|
sql = """
|
|
SELECT ref_nomenclatures.get_id_nomenclature('{typ}', '{cd}')
|
|
""".format(cd=cd,typ=typ)
|
|
with con.begin() as cnx:
|
|
res = cnx.execute(sql)
|
|
|
|
return res.one()[0] if res else None
|
|
|
|
def to_tzh(df,con):
|
|
tab = 't_zh'
|
|
sch = 'pr_zh'
|
|
lst_columns = [
|
|
x['name'] for x in con.dialect.get_columns(con,tab,sch) if x['name'] in df.columns
|
|
]
|
|
|
|
to_ins = df[lst_columns].copy()
|
|
try:
|
|
to_ins.to_postgis(
|
|
name=tab,
|
|
con=con,
|
|
schema=sch,
|
|
index=False,
|
|
if_exists='append',
|
|
method='multi'
|
|
)
|
|
except Exception as e:
|
|
print(e)
|
|
finally:
|
|
print("INSERT data TO t_zh OK !")
|
|
|
|
return gpd.pd.read_sql('SELECT id_zh,code FROM pr_zh.t_zh',con=con)
|
|
# id_zh = df[['code','pk']].rename(columns={'pk':'id_zh'})
|
|
|
|
def to_cor_lim_list(cor_lim,con):
|
|
"""
|
|
Insert into cor_lim_list the list of delimitation for each zh area
|
|
:param cor_lim: a dataframe with columns id_lim_list,cd_nomenclature_delimitation
|
|
:param con: a sqlalchemy connection
|
|
:return: None
|
|
"""
|
|
_cor_lim = (cor_lim
|
|
.set_index('id_lim_list')
|
|
.cd_nomenclature_delimitation.str.split(',',expand=True)
|
|
.stack()
|
|
.str.strip()
|
|
.to_frame('cd_lim')
|
|
.droplevel(-1)
|
|
)
|
|
_cor_lim['id_lim'] = [get_nomenclature_id(con,x,'CRIT_DELIM') for x in _cor_lim.cd_lim]
|
|
_cor_lim.drop('cd_lim',axis=1,inplace=True)
|
|
try:
|
|
_cor_lim.to_sql(
|
|
name='cor_lim_list',
|
|
con=con,
|
|
schema='pr_zh',
|
|
index=True,
|
|
if_exists='append',
|
|
method='multi'
|
|
)
|
|
except Exception as e:
|
|
print(e)
|
|
finally:
|
|
print("INSERT Délimitation TO cor_lim_list OK !")
|
|
|
|
def to_cor_zh_cb(id_zh,df,con):
|
|
"""
|
|
Insert habitats to cor_zh_cb table.
|
|
|
|
Parameters
|
|
----------
|
|
id_zh : pd.DataFrame
|
|
DataFrame containing 'code' and 'id_zh' columns.
|
|
df : pd.DataFrame
|
|
DataFrame containing 'code' and 'habitat_corine_biotope' columns.
|
|
con : sqlalchemy.engine.Engine
|
|
Connection to the geonature database.
|
|
|
|
Returns
|
|
-------
|
|
None
|
|
"""
|
|
cor_zh_cb = (df
|
|
.merge(id_zh,how='left',on='code')
|
|
.set_index('id_zh')
|
|
.habitat_corine_biotope.str.split(',')
|
|
.explode()
|
|
.str.strip()
|
|
.to_frame('lb_code')
|
|
.droplevel(-1)
|
|
)
|
|
try:
|
|
cor_zh_cb.to_sql(
|
|
name='cor_zh_cb',
|
|
con=con,
|
|
schema='pr_zh',
|
|
index=True,
|
|
if_exists='append',
|
|
method='multi'
|
|
)
|
|
except Exception as e:
|
|
print(e)
|
|
finally:
|
|
print("INSERT habitats to cor_zh_cb OK !")
|
|
|
|
def check_cd_nomenclature_impact(cd):
|
|
dizaine = range(0,100,10)
|
|
_cd = [x+'.0' if float(x) not in dizaine and not x.endswith('.0') else x for x in cd]
|
|
return _cd
|
|
|
|
def to_t_activity(id_zh,actv,con):
|
|
_activ = (actv
|
|
.merge(id_zh,how='left',on='code')
|
|
.drop('code',axis=1))
|
|
|
|
t_activ = gpd.pd.DataFrame()
|
|
for i,x in _activ.iterrows():
|
|
res = gpd.pd.DataFrame(json.loads(x['acti_impact']))
|
|
res['id_zh'] = x['id_zh']
|
|
t_activ = gpd.pd.concat([t_activ,res])
|
|
t_activ.set_index('id_zh',inplace=True)
|
|
t_activ.dropna(inplace=True,axis=1,how='all')
|
|
t_activ.dropna(inplace=True,axis=0,how='all')
|
|
|
|
t_activ['id_activity'] = [get_nomenclature_id(con,x,'ACTIV_HUM') for x in t_activ.cd_activite_humaine]
|
|
t_activ['id_position'] = [get_nomenclature_id(con,x,'LOCALISATION') for x in t_activ.localisation]
|
|
t_activ['id_impact_list'] = [uuid4() for _ in range(len(t_activ))]
|
|
|
|
impact_list = (t_activ[['id_impact_list','impact']]
|
|
.set_index('id_impact_list')
|
|
.impact.explode()
|
|
.to_frame('cd_impact')
|
|
.reset_index()
|
|
)
|
|
impact_list['_cd_impact'] = check_cd_nomenclature_impact(impact_list.cd_impact)
|
|
impact_list['id_impact'] = [get_nomenclature_id(con,x,'IMPACTS') for x in impact_list._cd_impact]
|
|
|
|
t_activ.drop(['cd_activite_humaine','localisation','impact'],axis=1,inplace=True)
|
|
impact_list.drop(['cd_impact','_cd_impact'],axis=1,inplace=True)
|
|
|
|
try:
|
|
t_activ.to_sql(
|
|
name='t_activity',
|
|
con=con,
|
|
schema='pr_zh',
|
|
index=True,
|
|
if_exists='append',
|
|
method='multi'
|
|
)
|
|
except Exception as e:
|
|
print(e)
|
|
finally:
|
|
print("INSERT activity to t_activity OK !")
|
|
|
|
try:
|
|
impact_list.to_sql(
|
|
name='cor_impact_list',
|
|
con=con,
|
|
schema='pr_zh',
|
|
index=True,
|
|
if_exists='append',
|
|
method='multi'
|
|
)
|
|
except Exception as e:
|
|
print(e)
|
|
finally:
|
|
print("INSERT impact to cor_impact_list OK !")
|
|
|
|
|
|
def check_habitat(habitat,con):
|
|
sql = '''
|
|
SELECT lb_code FROM pr_zh.bib_cb
|
|
WHERE lb_code {symbol} {code}
|
|
'''.format(
|
|
symbol='IN' if isinstance(habitat,(list,gpd.pd.Series,ndarray)) else '=',
|
|
code=tuple(habitat) if isinstance(habitat,(list,gpd.pd.Series,ndarray)) else f"'{habitat}'"
|
|
)
|
|
with con.begin() as cnx:
|
|
res = cnx.execute(sql).all()
|
|
return [x[0] for x in res if x]
|
|
|
|
|
|
def filter_habitat(habitat,con):
|
|
iscd_zh = check_habitat(habitat,con)
|
|
_cd_zh = habitat[habitat.isin(iscd_zh)]
|
|
_cd_notzh = habitat[~habitat.isin(iscd_zh)]
|
|
cd_zh = _cd_zh.groupby(_cd_zh.index).aggregate(', '.join)
|
|
cd_notzh = _cd_notzh.groupby(_cd_notzh.index).aggregate(', '.join)
|
|
return cd_zh,cd_notzh
|
|
|
|
|
|
def check_observ(obs,org,con):
|
|
_obs = normalize_observers(obs)
|
|
sql = '''
|
|
SELECT
|
|
r.id_role AS ids_observers,
|
|
CONCAT(r.nom_role, ' ', prenom_role) AS observers
|
|
FROM utilisateurs.t_roles r
|
|
JOIN utilisateurs.bib_organismes USING (id_organisme)
|
|
WHERE CONCAT(UPPER(r.nom_role), ' ', INITCAP(prenom_role)) {symbol} {code}
|
|
AND nom_organisme = '{org}'
|
|
'''.format(
|
|
symbol='IN' if isinstance(_obs,(list,gpd.pd.Series,ndarray)) else '=',
|
|
code=tuple(_obs) if isinstance(_obs,(list,gpd.pd.Series,ndarray)) else f"'{_obs}'",
|
|
org=org
|
|
)
|
|
with con.begin() as cnx:
|
|
res = cnx.execute(sql).all()
|
|
return [x[0] for x in res if x]
|
|
|
|
def insert_observ(obs,org,con):
|
|
check_observ(obs,org,con)
|
|
pass
|
|
|
|
def normalize_observers(obs):
|
|
_obs = obs.str.split(' ',expand=True)
|
|
_obs[0] = _obs[0].str.upper()
|
|
_obs[1] = _obs[1].str.title()
|
|
_obs_stack = _obs.stack().droplevel(-1)
|
|
return _obs_stack.groupby(_obs_stack.index).aggregate(' '.join)
|
|
|
|
def insert_orga(org,con):
|
|
pass
|
|
def select_orga_user(org,con):
|
|
sql ='''
|
|
SELECT id_organisme FROM utilisateurs.bib_organismes
|
|
WHERE nom_organisme = '{nom}'
|
|
'''.format(nom=org[0])
|
|
with con.begin() as cnx:
|
|
_res = cnx.execute(sql)
|
|
res = _res.one_or_none()
|
|
return res
|
|
|
|
|
|
def insert_orga_user(org,con):
|
|
res = select_orga_user(org,con)
|
|
if not res :
|
|
Q = input("Organisme `{}` non trouvé dans le schéma `utilisateurs`, voulez-vous l'ajouter ? (y/n) ".format(org[0]))
|
|
if Q.lower() != 'y':
|
|
return 'No'
|
|
sql ='''
|
|
INSERT INTO utilisateurs.bib_organismes (nom_organisme)
|
|
VALUES ('{nom}')
|
|
--ON CONFLICT (nom_organisme) DO NOTHING
|
|
RETURNING id_organisme;
|
|
'''.format(nom=org[0])
|
|
with con.begin() as cnx:
|
|
_res = cnx.execute(sql)
|
|
res = _res.one_or_none()
|
|
else:
|
|
print("Organisme `{}` existant dans le schéma `utilisateurs`".format(org[0]))
|
|
return res[0]
|
|
|
|
def select_orga_przh(org,con):
|
|
sql ='''
|
|
SELECT id_org FROM pr_zh.bib_organismes
|
|
WHERE name = '{nom}'
|
|
'''.format(nom=org[0])
|
|
with con.begin() as cnx:
|
|
_res = cnx.execute(sql)
|
|
res = _res.one_or_none()
|
|
return res
|
|
|
|
def insert_orga_przh(org,con):
|
|
res = select_orga_przh(org,con)
|
|
if not res :
|
|
Q = input("Organisme `{}` non trouvé dans le schéma `pr_zh`, voulez-vous l'ajouter ? (y/n) ".format(org[0]))
|
|
if Q.lower() != 'y':
|
|
return 'No'
|
|
sql ='''
|
|
INSERT INTO pr_zh.bib_organismes (name,abbrevation,is_op_org)
|
|
VALUES ('{nom}', {abbrev}, TRUE)
|
|
--ON CONFLICT (name,abbrevation) DO NOTHING
|
|
RETURNING id_org;
|
|
'''.format(nom=org[0],abbrev=f"'{org[1]}'" if org[1] else 'NULL')
|
|
with con.begin() as cnx:
|
|
_res = cnx.execute(sql)
|
|
res = _res.fetchall()
|
|
else:
|
|
print("Organisme `{}` existant dans le schéma `pr_zh`".format(org[0]))
|
|
return res[0]
|
|
|
|
def insert_users_missing(user,org,con):
|
|
id_org = insert_orga_przh(org,con)
|
|
id_user_orga = insert_orga_user(org,con)
|
|
obsv_missing = insert_observ(user,id_user_orga,con)
|
|
|
|
|
|
def insert_zh_fromapi(url,con,dep_filter,orga,prefix_hab_rq=''):
|
|
"""
|
|
Insert data from API into geonature database
|
|
|
|
Parameters
|
|
----------
|
|
url : str
|
|
url of the API
|
|
con : sqlalchemy.engine.Engine
|
|
connection to the geonature database
|
|
dep_filter : str
|
|
filter code_zh by this department code
|
|
prefix_hab_rq : str
|
|
prefix to add to remark_pres field for habitats not in geonature database
|
|
|
|
Returns
|
|
-------
|
|
None
|
|
"""
|
|
api = gpd.read_file(url)
|
|
df = (api#[api.code_zh.str.startswith(dep_filter)]
|
|
.rename(columns=dict_columns)
|
|
.rename_geometry('geom')
|
|
.merge(load_missing_propertie(url,'cd_nomenclature_delimitation',dep_filter),on='code')
|
|
)
|
|
|
|
insert_users_missing(df.observers,orga,con)
|
|
|
|
df['zh_uuid'] = [uuid4() for _ in range(len(df))]
|
|
df['id_lim_list'] = [uuid4() for _ in range(len(df))]
|
|
df['id_sdage'] = [get_nomenclature_id(con,x,'SDAGE') for x in df.cd_typo_sdage]
|
|
|
|
cd_hab = (df
|
|
.set_index('code')
|
|
.habitat_corine_biotope
|
|
.str.split(',').explode()
|
|
.str.strip())
|
|
|
|
hab_zh,hab_notzh = filter_habitat(cd_hab,con)
|
|
_df = (df
|
|
.drop('habitat_corine_biotope',axis=1)
|
|
.merge(hab_zh,how='left',right_index=True,left_on='code'))
|
|
_df = _df.merge(
|
|
prefix_hab_rq + hab_notzh.rename('remark_pres'),
|
|
how='left',right_index=True,left_on='code'
|
|
)
|
|
|
|
c = _df[_df.action=="Créer"].copy()
|
|
u = _df[_df.action=="Modifier"].copy()
|
|
|
|
if not c.empty:
|
|
id_zh = to_tzh(c,con)
|
|
to_cor_zh_cb(id_zh,c,con)
|
|
to_cor_lim_list(c[['id_lim_list','cd_nomenclature_delimitation']],con)
|
|
to_t_activity(id_zh,c[['code','acti_impact']],con)
|
|
if not u.empty:
|
|
raise('Script à coder !')
|
|
|
|
|
|
def load_missing_propertie(url,propertie,dep_filter='38'):
|
|
"""
|
|
Load from api the missing properties for the given url, propertie and dep_filter.
|
|
|
|
Parameters
|
|
----------
|
|
url : str
|
|
url of the api
|
|
propertie : str
|
|
name of the propertie to retrieve
|
|
dep_filter : str
|
|
filter for the department, default is '38'
|
|
|
|
Returns
|
|
-------
|
|
pd.DataFrame
|
|
DataFrame with columns 'code' and propertie
|
|
"""
|
|
|
|
data = urllib.request.urlopen(url).read()
|
|
output = json.loads(data)
|
|
features = output['items']['features']
|
|
|
|
res = {
|
|
'code':[x['properties']['code_zh'] for x in features if x['properties']['code_zh'].startswith(dep_filter)],
|
|
propertie:[
|
|
','.join(x['properties'][propertie])
|
|
for x in features
|
|
if x['properties']['code_zh'].startswith(dep_filter)],
|
|
}
|
|
return gpd.pd.DataFrame(res)
|
|
|
|
if __name__ == "__main__":
|
|
|
|
from sqlalchemy import create_engine
|
|
from sqlalchemy.engine import URL
|
|
# Parametres bdd
|
|
user = ''
|
|
pwd = ""
|
|
adr = ''
|
|
base = ''
|
|
url = URL.create("postgresql+psycopg2", username=user, password=pwd, host=adr, database=base)
|
|
con_gn = create_engine(url)
|
|
|
|
from pycen import con_gn
|
|
# Numéro de département permettant d'identifier les zones humides concernées par le territoire
|
|
# ['38', '05'], default : 38
|
|
dep_filter = '38'
|
|
# Préfixe ajouté dans le champs remark_pres lorsque des habitats décrits ne sont pas des habitats dit "humides"
|
|
prefix_hab_rmk = 'Autre(s) habitat(s) décrit(s) :\n'
|
|
# [Nom de l'organisme, Abbreviation]
|
|
organisme = ['Parc national des Écrins','PNE']
|
|
|
|
api = 'https://geonature.ecrins-parcnational.fr/api/exports/api/21?departement=38'
|
|
# insert_zh_fromapi(api,con_gn,dep_filter,organisme,prefix_hab_rq=prefix_hab_rmk)
|