Initial commit
This commit is contained in:
commit
ca58cfaccb
25
__init__.py
Normal file
25
__init__.py
Normal file
@ -0,0 +1,25 @@
|
||||
#!/usr/bin/env python3
|
||||
# -*- coding: UTF-8 -*-
|
||||
|
||||
from .zh import *
|
||||
from .bilan import *
|
||||
from .update import update
|
||||
from .pers import pers
|
||||
from .sites import sites
|
||||
from .ps import *
|
||||
from .ref import *
|
||||
from .params import con
|
||||
|
||||
|
||||
|
||||
__version__ = "1.0.2"
|
||||
__author__ = "Colas Geier"
|
||||
__email__ = "colas.geier@cen-isere.org"
|
||||
__all__ = []
|
||||
__license__ = "GPL"
|
||||
__spec__ = 'Outils de récupération de données de zones humide de la base de données MEDWET'
|
||||
__changes__ = {
|
||||
"1.0.1" : "Création de la librairie, extraction des données zones humides et sites",
|
||||
"1.0.2" : """Suppression des class et répartition des fonctions par sous-dossier pour faciliter l'appel.
|
||||
Ajout de la récupération de données des pelouses sèches"""
|
||||
}
|
||||
BIN
__pycache__/__init__.cpython-38.pyc
Normal file
BIN
__pycache__/__init__.cpython-38.pyc
Normal file
Binary file not shown.
BIN
__pycache__/bilan.cpython-38.pyc
Normal file
BIN
__pycache__/bilan.cpython-38.pyc
Normal file
Binary file not shown.
BIN
__pycache__/params.cpython-38.pyc
Normal file
BIN
__pycache__/params.cpython-38.pyc
Normal file
Binary file not shown.
BIN
__pycache__/ps.cpython-38.pyc
Normal file
BIN
__pycache__/ps.cpython-38.pyc
Normal file
Binary file not shown.
BIN
__pycache__/tools.cpython-38.pyc
Normal file
BIN
__pycache__/tools.cpython-38.pyc
Normal file
Binary file not shown.
BIN
__pycache__/update.cpython-38.pyc
Normal file
BIN
__pycache__/update.cpython-38.pyc
Normal file
Binary file not shown.
BIN
__pycache__/zh.cpython-38.pyc
Normal file
BIN
__pycache__/zh.cpython-38.pyc
Normal file
Binary file not shown.
80
bilan.py
Normal file
80
bilan.py
Normal file
@ -0,0 +1,80 @@
|
||||
#!/usr/bin/env python3
|
||||
# -*- coding: UTF-8 -*-
|
||||
#Nom : : get_zh_cen.py
|
||||
#Description :
|
||||
#Copyright : 2021, CEN38
|
||||
#Auteur : Colas Geier
|
||||
#Version : 1.0
|
||||
|
||||
from .zh import *
|
||||
from .sites import sites
|
||||
|
||||
#####################################
|
||||
### Bilan ###
|
||||
#####################################
|
||||
def get_bilan(code_site=None, nom_site=None):
|
||||
'''
|
||||
:sites: list,str. Nom de code du site de la zh.
|
||||
'''
|
||||
SITES = sites
|
||||
ZH = zh()
|
||||
info = SITES.get_sitesInfos(ids=code_site, nom=nom_site)
|
||||
CB = ZH.get_habitat(id_site=code_site, nom_site=nom_site)
|
||||
delim = ZH.get_delim(id_site=code_site, nom_site=nom_site)
|
||||
desc = ZH.get_usageprocess(id_site=code_site, nom_site=nom_site)
|
||||
rghyd = ZH.get_regHydro(id_site=code_site, nom_site=nom_site)
|
||||
subm = ZH.get_sub(id_site=code_site, nom_site=nom_site)
|
||||
conn = ZH.get_connex(id_site=code_site, nom_site=nom_site)
|
||||
fct = ZH.get_fct(id_site=code_site, nom_site=nom_site)
|
||||
evall = SITES.get_sitesGeom(id_site=code_site, nom_site=nom_site).drop(columns=['geom'])
|
||||
sub_con = pd.merge(subm, conn, how='outer', on=['id', 'id_site', 'date']) \
|
||||
.rename(columns={'description': 'desc_connex'})
|
||||
fctmt = {
|
||||
'entree_eau': rghyd[rghyd.in_out == 'entree'].drop(columns=['in_out'],errors='ignore'),
|
||||
'sortie_eau': rghyd[rghyd.in_out == 'sortie'].drop(columns=['in_out'],errors='ignore'),
|
||||
'sub_connex': sub_con,
|
||||
}
|
||||
lst_df = {
|
||||
'infos':info,
|
||||
'corine_biotope': CB,
|
||||
'delimitation': delim,
|
||||
'description': desc,
|
||||
'fonctionnement': fctmt,
|
||||
'fonction': fct,
|
||||
'evaluation': evall}
|
||||
for key in lst_df:
|
||||
if isinstance(lst_df[key], pd.DataFrame): lst_df[key].name = key
|
||||
if isinstance(lst_df[key], dict):
|
||||
for d in lst_df[key]:
|
||||
lst_df[key][d].name = d
|
||||
lst_df[key]['title'] = key
|
||||
return lst_df
|
||||
|
||||
def write_bilan(df, output):
|
||||
'''
|
||||
:df: dict. Dictionnaire de DataFrame.
|
||||
Ecriture d'un feuillet par élément du dictionnaire.
|
||||
Le nom du DataFrame est le titre du feuillet.
|
||||
output: str. chemin_vers_mon_fichier/mon_fichier.xlsx
|
||||
'''
|
||||
# Ecriture des données
|
||||
with pd.ExcelWriter(output) as writer:
|
||||
for d in df:
|
||||
DF = df[d]
|
||||
if isinstance(DF, pd.DataFrame):
|
||||
DF.to_excel(writer,sheet_name=DF.name,startrow=1 , startcol=0, index=False, header=DF.columns)
|
||||
ws = writer.book.active
|
||||
writer.sheets[DF.name].cell(1,1,value=DF.name)
|
||||
writer.save()
|
||||
elif isinstance(DF, dict):
|
||||
for i,d in enumerate(DF):
|
||||
if d == 'title': continue
|
||||
if i == 0:
|
||||
row = 1
|
||||
col = 0
|
||||
else:
|
||||
col = DF[d].shape[1] + col + 3
|
||||
DF[d].to_excel(writer,sheet_name=DF['title'],startrow=row , startcol=col, index=False)
|
||||
ws = writer.book.active
|
||||
writer.sheets[DF['title']].cell(column=col+1,row=row,value=d)
|
||||
writer.save()
|
||||
113
params.py
Normal file
113
params.py
Normal file
@ -0,0 +1,113 @@
|
||||
#!/usr/bin/env python3
|
||||
# -*- coding: UTF-8 -*-
|
||||
|
||||
from sqlalchemy import create_engine
|
||||
|
||||
isin_bdd = True
|
||||
# Parametres bdd CEN38 OUT
|
||||
user = 'postgres'
|
||||
pwd = 'tutu'
|
||||
adr = '192.168.60.10'
|
||||
base = 'bd_cen'
|
||||
con = create_engine('postgresql+psycopg2://{0}:{1}@{2}/{3}'.format(user,pwd,adr,base), echo=False)
|
||||
|
||||
# Parametres bdd SICEN OUT
|
||||
sicen_user = 'cen_admin'
|
||||
sicen_pwd = '#CEN38@venir'
|
||||
sicen_adr = '91.134.194.221'
|
||||
sicen_base = 'sicen2'
|
||||
sicen_con = create_engine('postgresql+psycopg2://{0}:{1}@{2}/{3}'.format(sicen_user,sicen_pwd,sicen_adr,sicen_base), echo=False)
|
||||
|
||||
|
||||
DIC_REF_HAB = {
|
||||
'ssbv': {
|
||||
'gid':'id',
|
||||
'CD_SSBV': 'cdssbv',
|
||||
'LIB_SSBV': 'nom',
|
||||
'CD_COMGEO': 'cd_comgeo',
|
||||
'CD_CTB': 'cd_ctb',
|
||||
'CD_': 'cd_',
|
||||
'CD_SUBUNIT': 'cd_subunit',
|
||||
'geometry': 'geom', },
|
||||
'plan_eau':{
|
||||
'gid':'id',
|
||||
'geometry':'geom',
|
||||
'CdOH':'cdoh',
|
||||
'TopoOH':'nom',
|
||||
'NaturePE':'nature_pe',},
|
||||
'masse_eau':{
|
||||
'gid':'id',
|
||||
'geometry':'geom',
|
||||
'CdMasseDEa':'cd_mass_eau',
|
||||
'CdEuMasseD':'cdeu_mass_eau',
|
||||
'NomMasseDE':'nom',
|
||||
'SurfaceTot':'surfacetot',
|
||||
'CdEuSsBass':'cdeu_ssbass',
|
||||
'TypeGeneal':'type_geneal',},
|
||||
'cours_eau':{
|
||||
'gid':'id',
|
||||
'geometry':'geom',
|
||||
'CdOH':'cdoh',
|
||||
'TopoOH':'nom',},
|
||||
'troncon_hydro':{
|
||||
'gid':'id',
|
||||
'geometry':'geom',
|
||||
'CdOH':'cdoh',
|
||||
'TopoOH':'nom',
|
||||
'NatureTH':'nature_th',
|
||||
'TronconFic':'troncon_fic',
|
||||
'PositionPa':'position_pa',
|
||||
'Persistanc':'persistance',
|
||||
'OrigineTH':'origine_th',
|
||||
'SensEcoule':'sens_ecoule',
|
||||
'ReseauPrin':'reseau_prin',
|
||||
'Delimitati':'delimit',
|
||||
'ClasseLarg':'classe_larg',
|
||||
'BrasTH':'bras_th',
|
||||
'CdCoursEau':'cd_cours_eau',
|
||||
'CdSurfaceE':'cd_surf_eau',},
|
||||
}
|
||||
|
||||
DIC_UNIQUE_KEY = {
|
||||
'ssbv': 'cdssbv',
|
||||
'plan_eau': 'cdoh',
|
||||
'masse_eau': 'cd_mass_eau',
|
||||
'cours_eau': 'cdoh',
|
||||
'troncon_hydro': 'nom',
|
||||
}
|
||||
|
||||
|
||||
|
||||
dic_zh_medwet = {
|
||||
'SITE_COD':'id',
|
||||
'DEPT':'dept',
|
||||
'ORG':'org',
|
||||
'NUM':'num',
|
||||
'SITE_NAME':'nom',
|
||||
}
|
||||
|
||||
class sites:
|
||||
def tab_sites():
|
||||
tab = {}
|
||||
tab['name'] = 'sites'
|
||||
tab['schema'] = 'sites'
|
||||
tab['desc_columns'] = con.dialect.get_columns(con,schema=tab['schema'],table_name=tab['name'])
|
||||
tab['columns'] = [col['name'] for col in tab['desc_columns']]
|
||||
tab['contraintes'] = con.dialect.get_foreign_keys(con,schema=tab['schema'],table_name=tab['name'])
|
||||
tab['pkey'] = con.dialect.get_pk_constraint(con,schema=tab['schema'],table_name=tab['name'])
|
||||
return tab
|
||||
|
||||
def tab_geomsites():
|
||||
tab = {}
|
||||
tab['name'] = 'r_sites_geom'
|
||||
tab['schema'] = 'sites'
|
||||
tab['desc_columns'] = con.dialect.get_columns(con,schema=tab['schema'],table_name=tab['name'])
|
||||
tab['columns'] = [col['name'] for col in tab['desc_columns']]
|
||||
tab['contraintes'] = con.dialect.get_foreign_keys(con,schema=tab['schema'],table_name=tab['name'])
|
||||
tab['pkey'] = con.dialect.get_pk_constraint(con,schema=tab['schema'],table_name=tab['name'])
|
||||
return tab
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
9
pers/__init__.py
Normal file
9
pers/__init__.py
Normal file
@ -0,0 +1,9 @@
|
||||
#!/usr/bin/env python3
|
||||
# -*- coding: UTF-8 -*-
|
||||
#Nom : : __init__.py
|
||||
#Description :
|
||||
#Copyright : 2021, CEN38
|
||||
#Auteur : Colas Geier
|
||||
#Version : 1.0
|
||||
|
||||
from .pers import *
|
||||
BIN
pers/__pycache__/__init__.cpython-38.pyc
Normal file
BIN
pers/__pycache__/__init__.cpython-38.pyc
Normal file
Binary file not shown.
BIN
pers/__pycache__/pers.cpython-38.pyc
Normal file
BIN
pers/__pycache__/pers.cpython-38.pyc
Normal file
Binary file not shown.
124
pers/pers.py
Normal file
124
pers/pers.py
Normal file
@ -0,0 +1,124 @@
|
||||
#!/usr/bin/env python3
|
||||
# -*- coding: UTF-8 -*-
|
||||
#Nom : : pers.py
|
||||
#Description :
|
||||
#Copyright : 2021, CEN38
|
||||
#Auteur : Colas Geier
|
||||
#Version : 1.0
|
||||
|
||||
from os import register_at_fork
|
||||
from pandas import read_sql, merge, DataFrame
|
||||
from pandas.core.indexing import is_nested_tuple
|
||||
from ..tools import to_upper, to_tuple, to_upperfirst, _get_table,_aggr_cols
|
||||
from ..params import con
|
||||
|
||||
schema = 'personnes'
|
||||
|
||||
def get_auteur(nom=None, prenom=None):
|
||||
table = 'personne'
|
||||
sql = 'SELECT * FROM %s.%s'%(schema,table)
|
||||
if nom or prenom : sql = sql + ' WHERE '
|
||||
if nom :
|
||||
sql = sql + 'nom IN %(nom)s'
|
||||
nom = to_upper(nom)
|
||||
if nom and prenom : sql = sql + ' AND '
|
||||
if prenom :
|
||||
sql = sql + 'prenom IN %(prenom)s'
|
||||
prenom = to_upperfirst(prenom)
|
||||
df = read_sql(
|
||||
sql = sql,
|
||||
con = con,
|
||||
params = {'nom': to_tuple(nom), 'prenom': to_tuple(prenom) })
|
||||
df['nom_prenom'] = df.nom + ' ' + df.prenom
|
||||
df.loc[df.nom_prenom.isna(), 'nom_prenom'] = df.loc[df.nom_prenom.isna(), 'nom']
|
||||
|
||||
return df
|
||||
|
||||
def get_organisme(ids=None, nom=None):
|
||||
table = 'organisme'
|
||||
df = _get_table(con, schema, table, ids=ids, nom=nom)
|
||||
return df.set_index('id')
|
||||
|
||||
|
||||
def _merge_orga(df, split_cols):
|
||||
org = get_organisme()
|
||||
aut = get_auteur()
|
||||
df = df.copy()
|
||||
for c in split_cols:
|
||||
if not isinstance(df[c], int): df[c] = df[c].astype(float)
|
||||
df[c].replace(aut.id.tolist(), aut.id_organisme.tolist(), inplace=True)
|
||||
df[c].replace(org.id.tolist(), org.nom.tolist(), inplace=True)
|
||||
df['organisme'] = None
|
||||
for c in split_cols:
|
||||
df.loc[df.organisme.isna(), 'organisme'] = df.loc[df['organisme'].isna(), c]
|
||||
for c in split_cols:
|
||||
comp = df.loc[~df[c].isna(),'organisme'].compare(df.loc[~df[c].isna(), c])
|
||||
if not comp.empty:
|
||||
comp['test'] = comp.apply(lambda x: x['other'] in x['self'], axis=1)
|
||||
comp = comp[~comp.test]
|
||||
if not comp.empty:
|
||||
df.loc[comp.index,'organisme'] = comp.self + ' & ' + comp.other
|
||||
df.drop(columns=split_cols, inplace=True)
|
||||
return df
|
||||
|
||||
|
||||
def _merge_author(df, col_aut, orga=False, on_index=False):
|
||||
# récupération des auteurs
|
||||
aut = get_auteur().fillna('')
|
||||
aut['nom_prenom'] = (aut['nom'] + ' ' + aut['prenom']).str.strip()
|
||||
aut['id'] = aut['id'].astype(str)
|
||||
id_inconnu = aut[aut.nom == 'INCONNU'].id[0]
|
||||
|
||||
# merge des auteurs
|
||||
df[col_aut].fillna(id_inconnu, inplace=True)
|
||||
df[col_aut] = df[col_aut].replace(['\.0'],'',regex=True)
|
||||
r_id = df[['id', col_aut]].copy()
|
||||
r_idSplit = r_id[col_aut].str.split(' & ', expand=True)
|
||||
r_id = r_id.join(r_idSplit)
|
||||
cSplit = r_idSplit.shape[1]
|
||||
cSplit = list(range(cSplit))
|
||||
|
||||
if orga:
|
||||
# récup des organismes
|
||||
org = _merge_orga(r_id, cSplit)
|
||||
|
||||
r_id[cSplit] = r_id[cSplit].replace(aut['id'].tolist(),aut['nom_prenom'].tolist())
|
||||
r_id = _aggr_cols(r_id,cSplit,' & ') \
|
||||
.rename(columns={'aggreg': 'auteur'}) \
|
||||
.drop(columns=cSplit)
|
||||
|
||||
if orga:
|
||||
# merge des organismes
|
||||
r_id = merge(r_id,org, on=['id', col_aut], suffixes=[None,'_y'])
|
||||
|
||||
if on_index:
|
||||
df = merge(df,r_id,how='left', right_index=True,left_index=True, suffixes=[None,'_y']) \
|
||||
.drop(columns=['id'+'_y',col_aut+'_y',col_aut])
|
||||
else:
|
||||
df = merge(df,r_id,how='left', on=['id', col_aut], suffixes=[None,'_y']) \
|
||||
.drop(columns=[col_aut])
|
||||
|
||||
return df
|
||||
|
||||
|
||||
def _merge_relation(df, table, schema, id=None, left_id=None,right_id=None):
|
||||
if id:
|
||||
params = {id: df[id].tolist() }
|
||||
elif left_id and right_id:
|
||||
params = {right_id: df[left_id].tolist() }
|
||||
|
||||
mrg = _get_table(con, schema, table, params_col=params)
|
||||
# if table == 'r_sites_auteur' or table == 'r_geomsites_auteur':
|
||||
if table.startswith('r_') and table.endswith('_auteur'):
|
||||
mrg = mrg[[right_id,'id_auteur']].groupby(
|
||||
[right_id])['id_auteur'].apply(lambda x: ' & '.join(x.astype(str)))
|
||||
mrg = DataFrame(data=mrg)
|
||||
|
||||
if id:
|
||||
df = merge(df,mrg, how='left', on=id)
|
||||
elif left_id and right_id:
|
||||
df = merge(df,mrg, how='left', left_on=left_id, right_on=right_id,suffixes=[None,'_y'])
|
||||
rmcol = df.columns[df.columns.str.endswith('_y')].tolist()
|
||||
if rmcol:
|
||||
df.drop(columns=[*rmcol], inplace=True)
|
||||
return df
|
||||
220
ps.py
Normal file
220
ps.py
Normal file
@ -0,0 +1,220 @@
|
||||
#!/usr/bin/env python3
|
||||
# -*- coding: UTF-8 -*-
|
||||
#Nom : : ps.py
|
||||
#Description :
|
||||
#Copyright : 2021, CEN38
|
||||
#Auteur : Colas Geier
|
||||
#Version : 1.0
|
||||
|
||||
|
||||
|
||||
from pandas.core.reshape.merge import merge
|
||||
from .pers.pers import _get_table
|
||||
from .sites.sites import _get_typ_milieux
|
||||
# from .params import con
|
||||
from .tools import _get_relation_tab,_set_geom
|
||||
|
||||
schema = 'ps'
|
||||
milieu = 'Pelouses sèches'
|
||||
|
||||
|
||||
def get_param():
|
||||
from .tools import _get_param
|
||||
return _get_param(schema=schema,param_table='param',type_table='type_param',type_court=False)
|
||||
|
||||
|
||||
|
||||
def get_sitesInfos(id_site=None, nom_site=None, columns=None, with_nameOrga=False, statut='actif'):
|
||||
from .sites.sites import get_sitesInfos
|
||||
|
||||
df = get_sitesInfos(
|
||||
ids=id_site, nom=nom_site, columns=columns,
|
||||
with_nameOrga=with_nameOrga, milieu=milieu, statut=statut)
|
||||
df.drop(columns=['typo_sdage'], inplace=True)
|
||||
|
||||
return df
|
||||
|
||||
|
||||
def get_listLegendePS():
|
||||
from .params import con
|
||||
return _get_table(con,schema,'param_legende')
|
||||
|
||||
|
||||
def get_sitesGeom(id_site=None, nom_site=None, columns=None, last_update=False, with_nameOrga=False,
|
||||
params_col={}, statut='actif'):
|
||||
from .sites.sites import get_sitesGeom
|
||||
|
||||
df = get_sitesGeom(
|
||||
id_site=id_site, nom_site=nom_site, columns=columns,
|
||||
with_nameOrga=with_nameOrga,last_update=last_update,
|
||||
params_col=params_col, milieu=milieu, statut=statut)
|
||||
# df.drop(columns=['typo_sdage'], inplace=True)
|
||||
|
||||
return df
|
||||
|
||||
|
||||
def ps_r_site_param(id_site=None, nom_site=None, columns=None, last_update=False,
|
||||
geom=False, raw=False, idparam=False, pivot=True):
|
||||
from pandas import pivot_table
|
||||
from .pers.pers import _merge_relation, _merge_author
|
||||
|
||||
table = 'r_site_param'
|
||||
r_tab_auteur = 'r_siteparam_auteur'
|
||||
df = _get_relation_tab(schema=schema,tab=table,id_site=id_site,nom_site=nom_site,
|
||||
last_update=last_update,geom=geom,milieu=milieu)
|
||||
if 'auteur' in df.columns:
|
||||
df.rename(columns={'auteur': 'auteur_geom'}, inplace=True)
|
||||
df = _merge_relation(df=df,table=r_tab_auteur,schema=schema, left_id='id',right_id='id_siteparam')
|
||||
df = _merge_author(df=df, col_aut='id_auteur')
|
||||
df.rename(columns={'auteur': 'auteur_param'}, inplace=True)
|
||||
|
||||
dic = get_param()
|
||||
if not df.empty:
|
||||
df.date_geom = df.date_geom.astype(str)
|
||||
nval = 'param'
|
||||
ntyp = 'type'
|
||||
df = merge(df,dic, how='left', left_on='id_param', right_on='id', suffixes=(None,'_y'))\
|
||||
.drop(['id_y','id_param'],1) \
|
||||
.rename(columns={'description':'desc_param_ps', 'nom':nval})
|
||||
|
||||
if raw:
|
||||
df.drop(columns='desc_param_ps', inplace=True)
|
||||
else:
|
||||
df.drop(columns=nval, inplace=True)
|
||||
df.rename(columns={'desc_param_ps':nval}, inplace=True)
|
||||
|
||||
df.taux.fillna(-999, inplace=True)
|
||||
if geom:
|
||||
dfgeom = df[['id_site', 'date_geom', 'geom']]
|
||||
print(dfgeom)
|
||||
dfgeom = dfgeom.drop_duplicates()
|
||||
df.drop(columns=['geom'], inplace=True)
|
||||
indexs = df.columns[~df.columns.isin(['taux',nval,'id','type'])].tolist()
|
||||
|
||||
if pivot:
|
||||
df2 = pivot_table(
|
||||
df.fillna(''),
|
||||
values=['taux',nval,'id'],
|
||||
index=indexs,
|
||||
columns=['type'],
|
||||
# dropna=False,
|
||||
aggfunc={lambda x: ', '.join(x.astype(str))})
|
||||
df2.columns = [ x[0].split('_')[0] + '_' + x[2][:6] for x in df2.columns ]
|
||||
date = [x for x in df2.index.names if x.startswith('date_par')]
|
||||
df2.reset_index(['auteur_param', *date], inplace=True)
|
||||
df = df2
|
||||
else :
|
||||
df.set_index(indexs, inplace=True)
|
||||
|
||||
if geom:
|
||||
idx = df.index.names
|
||||
df.reset_index(inplace=True)
|
||||
df = df.merge(dfgeom, how='left', on=['id_site', 'date_geom'])
|
||||
df.set_index(idx, inplace=True)
|
||||
df = _set_geom(df, hex=False)
|
||||
|
||||
cols = df.columns[df.columns.str.startswith('param')].sort_values()
|
||||
rcol = dic.type.unique()
|
||||
rcol.sort()
|
||||
dicc = dict(zip(cols,rcol))
|
||||
df.rename(columns=dicc, inplace=True)
|
||||
|
||||
if not idparam:
|
||||
rmcol = df.columns[df.columns.str.startswith('id')]
|
||||
df.drop(columns=rmcol, inplace=True)
|
||||
|
||||
df.replace(['-999',-999],[None, None],inplace=True, regex=True)
|
||||
df.dropna(how='all', axis=1, inplace=True)
|
||||
|
||||
return df
|
||||
|
||||
|
||||
|
||||
def ps_r_site_habitat(id_site=None, nom_site=None, columns=None, last_update=False,
|
||||
geom=False, raw=False, idhabitat=False, pivot=True):
|
||||
from pandas import pivot_table
|
||||
from .pers.pers import _merge_relation, _merge_author
|
||||
|
||||
table = 'r_site_habitat'
|
||||
r_tab_auteur = 'r_sitehab_auteur'
|
||||
r_hab_cb = 'r_hab_cb'
|
||||
|
||||
df = _get_relation_tab(schema=schema,tab=table,id_site=id_site,
|
||||
nom_site=nom_site,last_update=last_update,geom=geom,milieu=milieu)
|
||||
if 'auteur' in df.columns:
|
||||
df.rename(columns={'auteur': 'auteur_geom'}, inplace=True)
|
||||
|
||||
df = _merge_relation(df=df,table=r_tab_auteur,schema=schema,
|
||||
left_id='id',right_id='id_sitehab')
|
||||
df = _merge_author(df=df, col_aut='id_auteur')
|
||||
df.rename(columns={'auteur': 'auteur_hab'}, inplace=True)
|
||||
indexs = df.columns[~df.columns.isin(['id','n_hab','geom','index'])].tolist()
|
||||
|
||||
df = _merge_relation(df=df,table=r_hab_cb,schema=schema,
|
||||
left_id='id',right_id='id_sitehab') \
|
||||
.drop(columns=['id_sitehab'])
|
||||
|
||||
if not raw:
|
||||
from .zh import ref_hab
|
||||
cb = ref_hab().get_CB(cols=['id','lb_hab_fr','descriptif_cb_fr'])
|
||||
df = merge(df,cb, how='left', left_on='code_hab',right_on='id',suffixes=[None,'_y']) \
|
||||
.drop(columns=['code_hab','id_y']) \
|
||||
.rename(columns={'lb_hab_fr':'hab','descriptif_cb_fr':'desc_hab'})
|
||||
|
||||
if not df.empty:
|
||||
df.date_geom = df.date_geom.astype(str)
|
||||
if geom:
|
||||
dfgeom = df[['id_site', 'date_geom', 'geom']]
|
||||
print(dfgeom)
|
||||
dfgeom = dfgeom.drop_duplicates()
|
||||
df.drop(columns=['geom'], inplace=True)
|
||||
|
||||
vals = df.columns[~df.columns.isin(['id',*indexs])].tolist()
|
||||
if pivot:
|
||||
df2 = pivot_table(
|
||||
df.fillna(''),
|
||||
values=vals,
|
||||
index=indexs,
|
||||
columns=['index'],
|
||||
# dropna=False,
|
||||
aggfunc={lambda x: ', '.join(x.astype(str)),})
|
||||
df2.columns = [ x[0] + str(x[2]) for x in df2.columns ]
|
||||
date = [x for x in df2.index.names if x.startswith('date_hab')]
|
||||
df2.reset_index(['auteur_hab', *date], inplace=True)
|
||||
df = df2
|
||||
else :
|
||||
df.set_index(indexs, inplace=True)
|
||||
|
||||
if geom:
|
||||
idx = df.index.names
|
||||
df.reset_index(inplace=True)
|
||||
df = df.merge(dfgeom, how='left', on=['id_site', 'date_geom'])
|
||||
df.set_index(idx, inplace=True)
|
||||
df = _set_geom(df, hex=False)
|
||||
|
||||
if not idhabitat:
|
||||
idx = df.columns[df.columns.str.startswith('id')]
|
||||
df.drop(columns=idx, inplace=True)
|
||||
|
||||
return df
|
||||
|
||||
|
||||
|
||||
def get_ps(id_site=None, nom_site=None, columns=None, last_update=False,
|
||||
geom=False, raw=[False,True], idparam=False, idhabitat=False):
|
||||
|
||||
if isinstance(raw, bool):
|
||||
rawp = rawh = raw
|
||||
elif isinstance(raw, list):
|
||||
rawp = raw[0]
|
||||
rawh = raw[1]
|
||||
|
||||
df = ps_r_site_param(id_site=id_site, nom_site=nom_site, columns=columns,
|
||||
last_update=last_update, geom=False, raw=rawp, idparam=idparam, pivot=True)
|
||||
df2 = ps_r_site_habitat(id_site=id_site, nom_site=nom_site, columns=columns,
|
||||
last_update=last_update, geom=geom, raw=rawh, idhabitat=idhabitat, pivot=True)
|
||||
|
||||
df = merge(df, df2, on=df.index.names)
|
||||
|
||||
return df
|
||||
|
||||
4
ref/__init__.py
Normal file
4
ref/__init__.py
Normal file
@ -0,0 +1,4 @@
|
||||
#!/usr/bin/env python3
|
||||
# -*- coding: UTF-8 -*-
|
||||
|
||||
from .territoire import *
|
||||
BIN
ref/__pycache__/__init__.cpython-38.pyc
Normal file
BIN
ref/__pycache__/__init__.cpython-38.pyc
Normal file
Binary file not shown.
4
ref/territoire/__init__.py
Normal file
4
ref/territoire/__init__.py
Normal file
@ -0,0 +1,4 @@
|
||||
#!/usr/bin/env python3
|
||||
# -*- coding: UTF-8 -*-
|
||||
|
||||
from .territoire import get_districtNat
|
||||
BIN
ref/territoire/__pycache__/__init__.cpython-38.pyc
Normal file
BIN
ref/territoire/__pycache__/__init__.cpython-38.pyc
Normal file
Binary file not shown.
BIN
ref/territoire/__pycache__/territoire.cpython-38.pyc
Normal file
BIN
ref/territoire/__pycache__/territoire.cpython-38.pyc
Normal file
Binary file not shown.
11
ref/territoire/territoire.py
Normal file
11
ref/territoire/territoire.py
Normal file
@ -0,0 +1,11 @@
|
||||
#!/usr/bin/env python3
|
||||
# -*- coding: UTF-8 -*-
|
||||
|
||||
|
||||
from ...params import con
|
||||
from ...tools import _get_table
|
||||
schema = 'ref_territoire'
|
||||
|
||||
|
||||
def get_districtNat():
|
||||
return _get_table(con,schema,'districts_naturels')
|
||||
3
sites/__init__.py
Normal file
3
sites/__init__.py
Normal file
@ -0,0 +1,3 @@
|
||||
#!/usr/bin/env python3
|
||||
# -*- coding: UTF-8 -*-
|
||||
|
||||
BIN
sites/__pycache__/__init__.cpython-38.pyc
Normal file
BIN
sites/__pycache__/__init__.cpython-38.pyc
Normal file
Binary file not shown.
BIN
sites/__pycache__/sites.cpython-38.pyc
Normal file
BIN
sites/__pycache__/sites.cpython-38.pyc
Normal file
Binary file not shown.
144
sites/sites.py
Normal file
144
sites/sites.py
Normal file
@ -0,0 +1,144 @@
|
||||
#!/usr/bin/env python3
|
||||
# -*- coding: UTF-8 -*-
|
||||
#Nom : : sites.py
|
||||
#Description :
|
||||
#Copyright : 2021, CEN38
|
||||
#Auteur : Colas Geier
|
||||
#Version : 1.0
|
||||
|
||||
from ..tools import _get_table
|
||||
from ..pers.pers import _get_table,_merge_author,_merge_relation
|
||||
|
||||
|
||||
|
||||
from ..params import con
|
||||
from ..pers import pers
|
||||
schema = 'sites'
|
||||
auteur = pers.get_auteur()
|
||||
organisme = pers.get_organisme()
|
||||
lst_tab = con.dialect.get_table_names(con,schema=schema)
|
||||
columns_sitetab = con.dialect.get_columns(con,schema=schema,table_name='sites')
|
||||
columns_geomtab = con.dialect.get_columns(con,schema=schema,table_name='r_sites_geom')
|
||||
|
||||
|
||||
#####################################
|
||||
### schema sites ###
|
||||
#####################################
|
||||
def _get_typ_milieux(ids=None, nom=None):
|
||||
table = 'type_milieu'
|
||||
df = _get_table(con, schema, table, ids=ids, nom=nom)
|
||||
return df
|
||||
|
||||
def _get_typo_sdage(ids=None, nom=None):
|
||||
table = 'typo_sdage'
|
||||
df = _get_table(con, schema, table, ids=ids, nom=nom)
|
||||
return df
|
||||
|
||||
def _get_typ_site(ids=None, nom=None):
|
||||
table = 'type_site'
|
||||
df = _get_table(con, schema, table, ids=ids, nom=nom)
|
||||
return df
|
||||
|
||||
|
||||
def get_sitesInfos(ids=None, nom=None, columns=None, with_nameOrga=False, details=False,
|
||||
params_col={}, milieu=None, statut='actif'):
|
||||
from pandas import merge
|
||||
|
||||
drop = []
|
||||
table = 'sites'
|
||||
typ_milieux = _get_typ_milieux()
|
||||
typo_sdage = _get_typo_sdage()
|
||||
typ_site = _get_typ_site()
|
||||
|
||||
if milieu:
|
||||
m = _get_typ_milieux(nom=milieu)
|
||||
params_col = {**params_col, 'id_type_milieu':m.id[0].astype(str)}
|
||||
|
||||
df = _get_table(con, schema, table, ids=ids, nom=nom, cols=columns, params_col=params_col, statut=statut)
|
||||
|
||||
if not df.empty:
|
||||
# récupération des auteurs
|
||||
if 'id_auteur' in df.columns:
|
||||
df.drop(columns='id_auteur', inplace=True)
|
||||
df = _merge_relation(df=df,table='r_sites_auteur',schema=schema, left_id='id',right_id='id_site')
|
||||
df = _merge_author(df=df, col_aut='id_auteur', orga=with_nameOrga)
|
||||
# merge type_site
|
||||
if 'id_type_site' in df.columns:
|
||||
df = merge(df, typ_site, how='left', left_on='id_type_site', right_on='id', suffixes=('','_y') ) \
|
||||
.drop(columns=['id_type_site', 'id_y']) \
|
||||
.rename(columns={'nom_y': 'type_site', 'description': 'desc_type_site'})
|
||||
drop += ['desc_type_site']
|
||||
# merge typo_sdage
|
||||
if 'id_typo_sdage' in df.columns:
|
||||
df = merge(df, typo_sdage, how='left', left_on='id_typo_sdage', right_on='id', suffixes=('','_y') ) \
|
||||
.drop(columns=['id_typo_sdage', 'id_y']) \
|
||||
.rename(columns={'nom_y': 'typo_sdage', 'description': 'desc_typo_sdage'})
|
||||
drop += ['desc_typo_sdage']
|
||||
# merge type_milieu
|
||||
if 'id_type_milieu' in df.columns:
|
||||
df = merge(df, typ_milieux, how='left', left_on='id_type_milieu', right_on='id', suffixes=('','_y') ) \
|
||||
.drop(columns=['id_type_milieu', 'id_y']) \
|
||||
.rename(columns={'nom_y': 'type_milieu', 'description': 'desc_type_milieu', 'nom_court': 'nom_court_milieu'})
|
||||
drop += ['desc_type_milieu', 'nom_court_milieu']
|
||||
|
||||
if not details:
|
||||
df.drop(columns=drop, inplace=True)
|
||||
|
||||
return df.sort_values('id')
|
||||
|
||||
def get_sitesGeom(id_site=None, nom_site=None, columns=None, last_update=False,
|
||||
with_nameOrga=False, params_col={}, milieu=None, statut='actif'):
|
||||
|
||||
if columns:
|
||||
if not isinstance(columns, list): columns = [columns]
|
||||
if 'id' not in columns: columns.insert(0,'id')
|
||||
if 'id_site' not in columns: columns.insert(1,'id_site')
|
||||
if 'geom' not in columns: columns.insert(2,'geom')
|
||||
|
||||
if milieu:
|
||||
m = _get_typ_milieux(nom=milieu)
|
||||
params_col = {**params_col, 'id_type_milieu':m.id[0].astype(str)}
|
||||
|
||||
table = 'sites'
|
||||
df = _get_table(con, schema, table, ids=id_site, nom=nom_site, cols='id', params_col=params_col, statut=statut)
|
||||
idSite = df.id.tolist()
|
||||
if 'id_type_milieu' in params_col.keys():
|
||||
del params_col['id_type_milieu']
|
||||
|
||||
if idSite:
|
||||
if 'id_site' in params_col.keys() : params_col['id_site'] = idSite
|
||||
else: params_col = {**params_col, 'id_site':idSite}
|
||||
table = 'r_sites_geom'
|
||||
# df = _get_table(con, schema, table, params_col={'id_site':idSite}, cols=columns)
|
||||
df = _get_table(con, schema, table, params_col=params_col, cols=columns)
|
||||
if last_update:
|
||||
df.sort_values(['id_site','date'], inplace=True)
|
||||
df.reset_index(inplace=True, drop=True)
|
||||
df.drop_duplicates(subset=['id_site'], keep='last', inplace=True)
|
||||
df.reset_index(inplace=True, drop=True)
|
||||
|
||||
if 'id_auteur' in df.columns:
|
||||
df.drop(columns='id_auteur', inplace=True)
|
||||
df = _merge_relation(df=df,table='r_geomsites_auteur',schema=schema, left_id='id',right_id='id_geom_site')
|
||||
df = _merge_author(df=df, col_aut='id_auteur', orga=with_nameOrga)
|
||||
|
||||
if 'auteur' in df.columns:
|
||||
df.rename(columns={'auteur': 'auteur_geom'}, inplace=True)
|
||||
|
||||
return df
|
||||
|
||||
def new_site(df):
|
||||
from ..tools.sites import tab_sites
|
||||
final_col = [col['name'] for col in columns_sitetab]
|
||||
aut = df['auteur']
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
# lst_site = ['38RD0146','38RD0147','38RD0148','38RD0149','38RD0150','38RD0151','38RD0152',
|
||||
# '38RD0153','38RD0155','38RD0156','38RD0157','38RD0158','38RD0159','38RD0160',
|
||||
# '38RD0161','38RD0162','38RD0163','38RD0164','38RD0165']
|
||||
# df = zh.get_sitesInfos(id_site=lst_site)
|
||||
# df.loc[df.auteur=='INCONNU','auteur'] = 'Gereco Environnement'
|
||||
345
tools.py
Normal file
345
tools.py
Normal file
@ -0,0 +1,345 @@
|
||||
#!/usr/bin/env python3
|
||||
# -*- coding: UTF-8 -*-
|
||||
#Nom : : tools.py
|
||||
#Description :
|
||||
#Copyright : 2021, CEN38
|
||||
#Auteur : Colas Geier
|
||||
#Version : 1.0
|
||||
|
||||
from pandas import Series, Index, read_sql, merge
|
||||
|
||||
|
||||
|
||||
#####################################
|
||||
### Fonctions générales ###
|
||||
#####################################
|
||||
def _aggr_cols(df, lst_col, sep=''):
|
||||
df['aggreg'] = ''
|
||||
for c,col in enumerate(lst_col):
|
||||
add = ''
|
||||
if c > 0:
|
||||
add = sep
|
||||
df.loc[~df[col].isna(),'aggreg'] = df.loc[~df[col].isna(),'aggreg'] + add + df.loc[~df[col].isna(),col]
|
||||
return df
|
||||
|
||||
def to_tuple(obj):
|
||||
if isinstance(obj, (list,Series)): obj = tuple(obj)
|
||||
if isinstance(obj, (int, str)) : obj = tuple([obj])
|
||||
return obj
|
||||
|
||||
def to_colStringSQL(obj):
|
||||
if isinstance(obj, (int)) : obj = str(obj)
|
||||
if isinstance(obj, (list,Index)): obj = ",".join(obj) # Don't work with df.columns
|
||||
return obj
|
||||
|
||||
def to_upper(obj):
|
||||
if isinstance(obj, Series): obj = Series([o.upper() for o in list(obj)])
|
||||
if isinstance(obj, tuple): obj = tuple([o.upper() for o in list(obj)])
|
||||
if isinstance(obj, list) : obj = [o.upper() for o in obj]
|
||||
if isinstance(obj, str) : obj = obj.upper()
|
||||
return obj
|
||||
|
||||
def to_upperfirst(obj):
|
||||
if isinstance(obj, Series): obj = Series([o.upper()[0] + o.lower()[1:] for o in list(obj)])
|
||||
if isinstance(obj, tuple): obj = tuple([o.upper()[0] + o.lower()[1:] for o in list(obj)])
|
||||
if isinstance(obj, list) : obj = [o.upper()[0] + o.lower()[1:] for o in obj]
|
||||
if isinstance(obj, str) : obj = obj.upper()[0] + obj.lower()[1:]
|
||||
return obj
|
||||
|
||||
def dropZ(df,geom_col='geom'):
|
||||
from shapely import wkb
|
||||
df = df.copy()
|
||||
df.loc[df[geom_col].has_z, geom_col] = [
|
||||
wkb.loads(wkb.dumps(geom, output_dimension=2)) for geom in df.loc[df[geom_col].has_z, geom_col]
|
||||
]
|
||||
# if all(df_sites['geom'].has_z):
|
||||
# # Suppression de la dimension Z
|
||||
# geom_type = df_sites['geom'].geom_type
|
||||
# df_sites['geom'] = [wkb.loads(wkb.dumps(geom, output_dimension=2)) for geom in df_sites['geom']]
|
||||
# df_sites.set_geometry('geom', drop=False, inplace=True, crs=crs)
|
||||
return df
|
||||
|
||||
def remove_empty_keys(d):
|
||||
for k in d.keys():
|
||||
if not d[k]:
|
||||
del d[k]
|
||||
|
||||
def _get_table(con, schema, table, ids=None, nom=None, cols=None, params_col={}, statut='actif'):
|
||||
'''
|
||||
Selection d'une table:
|
||||
|
||||
Parameters
|
||||
----------
|
||||
con : Connection sqlalchemy
|
||||
schema : str. Nom du schema PostgreSQL.
|
||||
table : str. Nom de la table PostgreSQL.
|
||||
ids : liste. Identifiant de la table.
|
||||
Doit contenir un champ 'id'.
|
||||
nom : liste. Nom de la table.
|
||||
Doit contenir un champ 'nom'.
|
||||
cols : liste. Colonnes de la table à sélectionner.
|
||||
params_col : Dict. Paramètre de Séléction IN.
|
||||
requete : {'column': [liste]}
|
||||
sql trad : 'column IN (liste)'
|
||||
statut : str. 'actif', 'history', 'all'.
|
||||
Statut des sites à récupérer,
|
||||
'actif'; Date_fin IS NULL
|
||||
'history'; A une Date_fin
|
||||
'all'; Tous les Sites
|
||||
'''
|
||||
sql = 'SELECT * FROM {sch}.{tab}'.format(sch=schema, tab=table)
|
||||
if params_col:
|
||||
params_col = { k: v for k, v in params_col.items() if v }
|
||||
|
||||
if cols : sql = sql.replace('*', to_colStringSQL(cols) )
|
||||
# Si arg (ids|nom|params_col), ajout de 'WHERE'
|
||||
if ids or nom or params_col or (statut!='all' and table=='sites') : sql = sql + ' WHERE '
|
||||
if ids : sql = sql + 'id IN %(ids)s'
|
||||
if ids and (nom or params_col or (statut!='all' and table=='sites')) : sql = sql + ' AND '
|
||||
if nom : sql = sql + 'nom IN %(nom)s'
|
||||
if nom and (params_col or (statut!='all' and table=='sites')) : sql = sql + ' AND '
|
||||
if statut=='actif' and table=='sites': sql = sql + ' date_fin IS NULL '
|
||||
if statut=='history' and table=='sites': sql = sql + ' date_fin IS NOT NULL '
|
||||
if params_col and (statut!='all' and table=='sites') : sql = sql + ' AND '
|
||||
if params_col :
|
||||
sql = sql + ' AND '.join([k + ' IN %({})s'.format(k) for k in params_col.keys()])
|
||||
params_col = {key:to_tuple(params_col[key]) for key in params_col.keys()}
|
||||
|
||||
sql = sql.replace("',)","')")
|
||||
df = read_sql(
|
||||
sql = sql,
|
||||
con = con,
|
||||
params = {'ids': to_tuple(ids), 'nom': to_tuple(nom), **params_col })
|
||||
if 'geom' in df.columns:
|
||||
df = _set_geom(df)
|
||||
return df
|
||||
|
||||
def _set_geom(df, hex=True):
|
||||
from shapely.wkb import loads
|
||||
import geopandas as gpd # set_geometry
|
||||
|
||||
if hex:
|
||||
df['geom'] = [(loads(geom, hex=True)) for geom in df['geom']]
|
||||
df = df.set_geometry('geom', crs='EPSG:2154')
|
||||
|
||||
return df
|
||||
|
||||
|
||||
def _get_param(schema, param_table, type_table=None, type_court=True):
|
||||
from .params import con
|
||||
|
||||
if type_table:
|
||||
typ = _get_table(con, schema, table=type_table)
|
||||
par = _get_table(con, schema, table=param_table, params_col={'id_type':typ.id.tolist()})
|
||||
df = merge(par, typ, left_on='id_type', right_on='id', how='left', suffixes=(None, '_typ')) \
|
||||
.drop(columns=['id_type','id_typ'])
|
||||
if 'description_typ' in df.columns: del df['description_typ']
|
||||
if type_court: df = df.drop(columns=['nom_typ']).rename(columns={'nom_court_typ':'type'})
|
||||
else : df = df.drop(columns=['nom_court_typ'],errors='ignore').rename(columns={'nom_typ':'type'})
|
||||
index = ['id']
|
||||
if 'type' in df.columns:
|
||||
index += ['type']
|
||||
df = df.set_index(index).reset_index()
|
||||
else:
|
||||
df = _get_table(con, schema, table=param_table)
|
||||
|
||||
return df
|
||||
|
||||
|
||||
def _get_relation_tab(schema, tab, id_site=None, nom_site=None, last_update=False,
|
||||
geom=False,params_col={},milieu=None,statut='actif'):
|
||||
'''
|
||||
|
||||
Parameters
|
||||
----------
|
||||
schema : str. Default : None.
|
||||
Schéma de la database New_cen38.
|
||||
tab : str. Default : None.
|
||||
Schéma de la database New_cen38.
|
||||
id_site : str,list. Default : None.
|
||||
Identifiants des sites présent dans la table 'sites'.
|
||||
nom_site : str,list.
|
||||
Nom des sites présent dans la table 'sites'.
|
||||
last_update : bool. Default : False.
|
||||
If True, récupération des dernières données à jour.
|
||||
If False, récupération des toutes les données.
|
||||
geom : bool. Default : False.
|
||||
Return les geometries des sites
|
||||
params_col : dict. Default : {}.
|
||||
Application des conditions de séléction des données
|
||||
sous la forme d'un dictionnaire {'nomcolumn': conditions}.
|
||||
milieu : str. Default : None.
|
||||
Nom d'un milieu référencé dans la table `sites.type_milieu`.
|
||||
Liste récupérable avec la fonction `pyzh.sites._get_typ_milieux()`
|
||||
statut : str. 'actif', 'history', 'all'.
|
||||
Statut des sites à récupérer,
|
||||
'actif'; Date_fin IS NULL
|
||||
'history'; A une Date_fin
|
||||
'all'; Tous les Sites
|
||||
|
||||
|
||||
Return
|
||||
----------
|
||||
df
|
||||
'''
|
||||
from .params import con
|
||||
from .sites.sites import get_sitesGeom
|
||||
# from .pers.pers import _merge_relation, _merge_author
|
||||
|
||||
table = 'sites'
|
||||
dfSG = get_sitesGeom(columns='date', id_site=id_site, nom_site=nom_site,
|
||||
last_update=last_update,params_col=params_col,milieu=milieu,statut=statut)
|
||||
|
||||
if not geom and not dfSG.empty:
|
||||
dfSG.drop('geom',1,inplace=True)
|
||||
ids = dfSG.id.tolist()
|
||||
table = tab
|
||||
|
||||
if ids :
|
||||
df = _get_table(con, schema, table, params_col={'id_geom_site':ids})
|
||||
if last_update:
|
||||
tmp = ['id', 'date', 'valid']
|
||||
col = [*df.columns[~df.columns.isin(tmp)]]
|
||||
df = df.sort_values(col).reset_index(drop=True)
|
||||
df.drop_duplicates(subset=col, keep='last', inplace=True)
|
||||
df.reset_index(drop=True, inplace=True)
|
||||
df = df[df.valid].copy()
|
||||
|
||||
if 'date' in dfSG.columns and 'date' in df.columns:
|
||||
dfSG.rename(columns={'date':'date_geom'}, inplace=True)
|
||||
df.rename(columns={'date':'date_'+table.rsplit('_',1)[1][:5]}, inplace=True)
|
||||
# if table == 'r_site_sub':
|
||||
# print('DF : {}'.format(df))
|
||||
# print(df.empty)
|
||||
# print('DFSG : {}'.format(dfSG))
|
||||
|
||||
if not df.empty:
|
||||
df = merge(dfSG,df, how='left', left_on='id', right_on='id_geom_site', suffixes=('_x', None)) \
|
||||
.drop(['id_x','id_geom_site'],1) \
|
||||
.set_index('id').reset_index()
|
||||
|
||||
return df
|
||||
else:
|
||||
print('PAS de géometries de sites sélectionnées ...')
|
||||
|
||||
|
||||
def _get_relation_autor(df, relation_tab, schema, id_df, id_relation, id_rela_auth='id_auteur'):
|
||||
from .pers.pers import _merge_relation, _merge_author
|
||||
if 'site' in relation_tab:
|
||||
suffixe = relation_tab.split('_')[1].split('site')[1]
|
||||
suffixe = '_' + suffixe
|
||||
df = _merge_relation(df=df,table=relation_tab,schema=schema,
|
||||
left_id = id_df,
|
||||
right_id = id_relation)
|
||||
df = _merge_author(df=df, col_aut=id_rela_auth, on_index=True)
|
||||
df.rename(columns={'auteur': 'auteur'+suffixe}, inplace=True)
|
||||
return df
|
||||
|
||||
|
||||
|
||||
def to_geoms(geometries):
|
||||
from shapely.geometry import Polygon,LineString
|
||||
for geometry in geometries:
|
||||
if isinstance(geometry, (Polygon,LineString)):
|
||||
yield geometry
|
||||
else:
|
||||
yield from geometry
|
||||
|
||||
|
||||
def union_polygons_geometry(df):
|
||||
'''
|
||||
Transforme un GeoDataFrame de Polygons
|
||||
et/ou MultiPolygons en un MultiPolygon unique:
|
||||
|
||||
Parameters
|
||||
----------
|
||||
df : GeoDataFrame.
|
||||
'''
|
||||
from shapely.geometry import MultiPolygon
|
||||
name_geom = df.geometry.name
|
||||
|
||||
poly = df.loc[df.geom_type=='Polygon',name_geom].tolist()
|
||||
multipoly = df.loc[df.geom_type=='MultiPolygon',name_geom].tolist()
|
||||
|
||||
if poly:
|
||||
mp2 = MultiPolygon(poly)
|
||||
if poly and multipoly:
|
||||
res = MultiPolygon(to_geoms([*mp2, *multipoly]))
|
||||
elif not poly and multipoly:
|
||||
res = MultiPolygon(to_geoms(multipoly))
|
||||
elif not multipoly and poly:
|
||||
res = MultiPolygon(poly)
|
||||
|
||||
return res
|
||||
|
||||
|
||||
def union_lines_geometry(df):
|
||||
from shapely.geometry import MultiLineString
|
||||
name_geom = df.geometry.name
|
||||
|
||||
line = df.loc[df.geom_type=='LineString',name_geom].tolist()
|
||||
multiline = df.loc[df.geom_type=='MultiLineString',name_geom].tolist()
|
||||
|
||||
if line:
|
||||
mp2 = MultiLineString(line)
|
||||
if line and multiline:
|
||||
res = MultiLineString(to_geoms([*mp2, *multiline]))
|
||||
elif not line and multiline:
|
||||
res = MultiLineString(to_geoms([*multiline]))
|
||||
elif not multiline and line:
|
||||
res = MultiLineString(line)
|
||||
|
||||
return res
|
||||
|
||||
|
||||
def calc_recouvrmt(df1,df2):
|
||||
'''
|
||||
Calcule le recouvrement de df2 sur df1
|
||||
pour chaque géométrie de df1:
|
||||
|
||||
Parameters
|
||||
----------
|
||||
df1 : GeoDataFrame.
|
||||
df2 : GeoDataFrame.
|
||||
'''
|
||||
from geopandas import sjoin
|
||||
tmp = sjoin(
|
||||
df1,
|
||||
df2[['geom']],
|
||||
op = 'intersects',
|
||||
how = 'left')
|
||||
tmp.dropna(subset=['index_right'],inplace=True)
|
||||
tmp.index_right = tmp.index_right.astype(int)
|
||||
tmp.reset_index(inplace=True)
|
||||
tmp = tmp.join(
|
||||
df2[['geom']].rename(columns={'geom': 'right_geom'}),
|
||||
on=['index_right'], how='left')
|
||||
tmp2 = tmp[['index_right','right_geom']].copy() \
|
||||
.rename(columns={'right_geom': 'geom'}) \
|
||||
.set_geometry('geom')
|
||||
tmp1 = tmp[['id_site','geom']].copy() \
|
||||
.set_geometry('geom')
|
||||
|
||||
if not tmp1.geom.values.is_valid.all():
|
||||
tmp1.loc[~tmp1.geom.values.is_valid,'geom'] = tmp1.loc[~tmp1.geom.values.is_valid,'geom'].buffer(0)
|
||||
if not tmp2.geom.values.is_valid.all():
|
||||
tmp2.loc[~tmp2.geom.values.is_valid,'geom'] = tmp2.loc[~tmp2.geom.values.is_valid,'geom'].buffer(0)
|
||||
|
||||
tmp['perc_rcvmt'] = (tmp1.intersection(tmp2).area/tmp1.area)*100
|
||||
tmp = tmp.groupby(['id_site']).sum().reset_index()
|
||||
df1 = df1.merge(tmp[['id_site','perc_rcvmt']], on=['id_site'], how='left')
|
||||
df1.perc_rcvmt.fillna(0, inplace=True)
|
||||
df1.perc_rcvmt = df1.perc_rcvmt.round(2)
|
||||
return df1
|
||||
|
||||
|
||||
def Polygons_to_MultiPolygon(df):
|
||||
from shapely.geometry import MultiPolygon
|
||||
from pandas import concat
|
||||
df = df.copy()
|
||||
multi = df.loc[df.geom_type=='MultiPolygon'].copy()
|
||||
poly = df.loc[df.geom_type=='Polygon'].copy()
|
||||
poly['geom'] = [MultiPolygon([geom]) for geom in df.loc[df.geom_type=='Polygon','geom'] ]
|
||||
df = concat([multi,poly])
|
||||
df.sort_index(inplace=True)
|
||||
return df
|
||||
282
update.py
Normal file
282
update.py
Normal file
@ -0,0 +1,282 @@
|
||||
#!/usr/bin/env python3
|
||||
# -*- coding: UTF-8 -*-
|
||||
#Nom : : update.py
|
||||
#Description :
|
||||
#Copyright : 2021, CEN38
|
||||
#Auteur : Colas Geier
|
||||
#Version : 1.0
|
||||
"""
|
||||
Module contains tools for processing files into DataFrames or other objects
|
||||
"""
|
||||
|
||||
import geopandas as gpd
|
||||
import pandas as pd
|
||||
from .params import DIC_REF_HAB, DIC_UNIQUE_KEY
|
||||
from .tools import _get_table
|
||||
|
||||
#####################################
|
||||
### Update ###
|
||||
#####################################
|
||||
def __get_pkey__(engine,table_name,schema):
|
||||
pk = engine.dialect.get_pk_constraint(engine,table_name=table_name,schema=schema)
|
||||
return pk
|
||||
|
||||
def _get_dic(self):
|
||||
if self._table:
|
||||
select_cols = DIC_REF_HAB[self._table]
|
||||
return select_cols
|
||||
|
||||
def _get_schema_name(self):
|
||||
engine = self.con
|
||||
lst_sch = engine.dialect.get_schema_names(engine)
|
||||
tab = []
|
||||
for sch in lst_sch:
|
||||
lst_tab = engine.dialect.get_table_names(engine,schema=sch)
|
||||
if self._table in lst_tab:
|
||||
tab += [sch]
|
||||
|
||||
if len(tab) > 1:
|
||||
print('La table %s exitent dans plusieurs schéma ! Préciser l''argument ''schema'''%self._table)
|
||||
elif len(tab) == 0:
|
||||
print('La table %s sitée n''existe pas ...')
|
||||
else:
|
||||
return tab[0]
|
||||
|
||||
def _check_data_exist(self, df):
|
||||
engine = self.con
|
||||
pk = __get_pkey__(engine,table_name=self._table,schema=self._schema)
|
||||
self._pkey = pk['constrained_columns'][0]
|
||||
pkey = self._pkey
|
||||
if self._table in DIC_UNIQUE_KEY.keys():
|
||||
pkey = DIC_UNIQUE_KEY[self._table]
|
||||
|
||||
data_indb = _get_table(self.con, self._schema, self._table, cols=[pkey])
|
||||
data_exist_not = df[~df[pkey].isin(data_indb[pkey])]
|
||||
data_exist = df[df[pkey].isin(data_indb[pkey])]
|
||||
data_exist_eq, data_exist_ne = _check_eq_df(self, data_exist)
|
||||
|
||||
return [data_exist_eq, data_exist_ne, data_exist_not]
|
||||
|
||||
|
||||
def _check_eq_df(self,df):
|
||||
from .zh import _get_table
|
||||
pkey = self._pkey
|
||||
params = {}
|
||||
if isinstance(pkey, list):
|
||||
for key in pkey:
|
||||
p = {key: df[key]}
|
||||
params = {**params, **p}
|
||||
else:
|
||||
params = {pkey:df[pkey]}
|
||||
data = _get_table(self.con, self._schema, self._table, cols=df.columns.tolist(), params_col=params)
|
||||
if self._table in DIC_UNIQUE_KEY.keys():
|
||||
if DIC_UNIQUE_KEY[self._table] != pkey:
|
||||
df = df.sort_values(DIC_UNIQUE_KEY[self._table])
|
||||
data = data.sort_values(DIC_UNIQUE_KEY[self._table])
|
||||
else :
|
||||
df = df.sort_values(pkey)
|
||||
data = data.sort_values(pkey)
|
||||
else:
|
||||
df = df.sort_values(pkey)
|
||||
data = data.sort_values(pkey)
|
||||
if self._table in DIC_UNIQUE_KEY.keys():
|
||||
if DIC_UNIQUE_KEY[self._table] != pkey:
|
||||
df.set_index(pkey, inplace=True)
|
||||
data.set_index(pkey, inplace=True)
|
||||
eq = df[df.eq(data).all(axis=1)]
|
||||
ne = df[df.ne(data).any(axis=1)]
|
||||
eq.reset_index(drop=False, inplace=True)
|
||||
ne.reset_index(drop=False, inplace=True)
|
||||
else:
|
||||
eq = df[df.eq(data).all(axis=1)]
|
||||
ne = df[df.ne(data).any(axis=1)]
|
||||
else:
|
||||
eq = df[df.eq(data).all(axis=1)]
|
||||
ne = df[df.ne(data).any(axis=1)]
|
||||
return [eq,ne]
|
||||
|
||||
def __openFile__(file):
|
||||
if isinstance(file,str):
|
||||
df = pd.read_table(file)
|
||||
|
||||
|
||||
|
||||
class update_ref_table:
|
||||
'''
|
||||
Mise à jour des tables de référance situées dans les
|
||||
schéma :
|
||||
ref_habitats, ref_hydro
|
||||
|
||||
Paramètres :
|
||||
------------
|
||||
file : str. chemain du vecteur.
|
||||
table : str. Nom de la table à mettre à jour.
|
||||
schema : str. Nom du schéma.
|
||||
update : bool. Si True, mise à jour des champs différents.
|
||||
Défault False.
|
||||
'''
|
||||
|
||||
def __init__(self, file, table, schema=None, update=False):
|
||||
|
||||
from .params import con
|
||||
|
||||
self.con = con
|
||||
self._file = file
|
||||
self._table = table
|
||||
self._updt = update
|
||||
self._schema = schema
|
||||
|
||||
if not self._schema:
|
||||
self._schema = _get_schema_name(self)
|
||||
self._pkey = __get_pkey__(
|
||||
self.con,table_name=self._table,schema=self._schema
|
||||
)['constrained_columns'][0]
|
||||
|
||||
self._update_table_with_geom()
|
||||
|
||||
|
||||
def _update_table_with_geom(self):
|
||||
dic = _get_dic(self)
|
||||
select_cols = list(dic.values())
|
||||
|
||||
if isinstance(self._file,str):
|
||||
df = gpd.read_file(self._file)
|
||||
elif isinstance(self._file,gpd.GeoDataFrame):
|
||||
df = self._file.copy()
|
||||
else:
|
||||
print('Argument ''file'' ERROR !')
|
||||
|
||||
if 'id' not in df.columns:
|
||||
df.index.name = 'id'
|
||||
df.reset_index(drop=False, inplace=True)
|
||||
|
||||
if not df.crs:
|
||||
df.set_crs(epsg=2154, inplace=True)
|
||||
|
||||
if df.crs.srs != 'epsg:2154':
|
||||
df.to_crs(epsg=2154, inplace=True)
|
||||
|
||||
df.rename(columns=dic, inplace=True)
|
||||
df = df[select_cols]
|
||||
|
||||
df = df.set_geometry('geom')
|
||||
|
||||
if 'Polygon' in df.geom_type.unique() and 'MultiPolygon' in df.geom_type.unique():
|
||||
from shapely.geometry.multipolygon import MultiPolygon
|
||||
tmp = df.loc[df.geom_type == 'Polygon'].copy()
|
||||
geom = [MultiPolygon([x]) for x in tmp.loc[tmp.geom_type == 'Polygon','geom']]
|
||||
tmp = tmp.set_geometry(geom)
|
||||
df = pd.concat([df.drop(tmp.index), tmp]).sort_values('id')
|
||||
|
||||
if 'LineString' in df.geom_type.unique() and 'MultiLineString' in df.geom_type.unique():
|
||||
from shapely.geometry.multilinestring import MultiLineString
|
||||
tmp = df.loc[df.geom_type == 'LineString'].copy()
|
||||
geom = [MultiLineString([x]) for x in tmp.loc[tmp.geom_type == 'LineString','geom']]
|
||||
tmp = tmp.set_geometry(geom)
|
||||
df = pd.concat([df.drop(tmp.index), tmp]).sort_values('id')
|
||||
|
||||
df_exst, df_updt, df_imp = _check_data_exist(self,df)
|
||||
len_imp = len(df_imp)
|
||||
len_updt = len(df_updt)
|
||||
len_exst = len(df_exst)
|
||||
if len_exst > 0:
|
||||
print('DATAS {0}/{1} already exist'.format(len_exst,len(df)))
|
||||
else:
|
||||
print('NO DATA EXIST ...')
|
||||
if df_imp.empty:
|
||||
print('NO DATA TO IMPORT ...')
|
||||
else :
|
||||
Q = input('IMPORT {0}/{1} ... Yes(y)/No(n)/View(v) ?'.format(len_imp,len(df)))
|
||||
while Q.lower() in ['view','v']:
|
||||
print(df_imp)
|
||||
Q = input('IMPORT {0}/{1} ... Yes(y)/No(n)/View(v) ?'.format(len_imp,len(df)))
|
||||
if Q.lower() in ['yes','y']:
|
||||
print('IMPORT {0}/{1} ...'.format(len_imp,len(df)))
|
||||
df_imp.to_postgis(
|
||||
name = self._table,
|
||||
con = self.con,
|
||||
schema = self._schema,
|
||||
if_exists = 'append',
|
||||
geom_col = 'geom'
|
||||
)
|
||||
elif Q.lower() in ['no','n']:
|
||||
pass
|
||||
|
||||
if df_updt.empty:
|
||||
print('NO DATA TO UPDATE ...')
|
||||
else :
|
||||
Q = input('UPDATE {0}/{1} ... Yes(y)/No(n)/View(v) ?'.format(len_updt,len(df)))
|
||||
while Q.lower() in ['view','v']:
|
||||
print(df_updt)
|
||||
Q = input('UPDATE {0}/{1} ... Yes(y)/No(n)/View(v) ?'.format(len_updt,len(df)))
|
||||
if Q.lower() in ['yes','y']:
|
||||
print('UPDATE {0}/{1} ...'.format(len_updt,len(df)))
|
||||
update.update_to_sql(
|
||||
df=df_updt,
|
||||
con=self.con,
|
||||
table_name=self._table,
|
||||
schema_name=self._schema,
|
||||
key_name=self._pkey
|
||||
)
|
||||
elif Q.lower() in ['no','n']:
|
||||
pass
|
||||
|
||||
|
||||
|
||||
class update:
|
||||
def update_ref(file, table, schema=None, update=False):
|
||||
update_ref_table(file, table, schema, update)
|
||||
|
||||
|
||||
def update_to_sql(df, con, table_name, schema_name, key_name):
|
||||
from sys import exit
|
||||
|
||||
a = []
|
||||
b = []
|
||||
table = table_name
|
||||
schema = schema_name
|
||||
primary_key = key_name
|
||||
pkey = __get_pkey__(
|
||||
con,table_name=table,schema=schema)
|
||||
|
||||
if pkey not in df.columns:
|
||||
exit('Le champs clé primaire "%s" ne figure pas dans le DataFrame'%pkey)
|
||||
|
||||
if isinstance(primary_key, str):
|
||||
primary_key = [primary_key]
|
||||
|
||||
for col in df.columns:
|
||||
if col in primary_key:
|
||||
b.append("t.{col}=f.{col}".format(col=col))
|
||||
else:
|
||||
a.append("{col}=t.{col}".format(col=col))
|
||||
|
||||
if isinstance(df, gpd.GeoDataFrame):
|
||||
df.to_postgis(
|
||||
name = 'temp_table',
|
||||
con = con,
|
||||
schema = schema,
|
||||
if_exists = 'replace',
|
||||
geom_col = df.geometry.name
|
||||
)
|
||||
else:
|
||||
df.to_sql(
|
||||
name = 'temp_table',
|
||||
con = con,
|
||||
schema = schema,
|
||||
if_exists = 'replace',
|
||||
index = False,
|
||||
method = 'multi'
|
||||
)
|
||||
|
||||
update_stmt_1 = "UPDATE {sch}.{final_table} f".format(sch=schema,final_table=table)
|
||||
update_stmt_2 = " FROM {sch}.temp_table t".format(sch=schema)
|
||||
update_stmt_6 = " WHERE %s"%' AND '.join(b)
|
||||
update_stmt_3 = " SET "
|
||||
update_stmt_4 = ", ".join(a)
|
||||
update_stmt_5 = update_stmt_1 + update_stmt_3 + update_stmt_4 + update_stmt_2 + update_stmt_6 + ";"
|
||||
drop_stmt = "DROP TABLE {sch}.temp_table ;".format(sch=schema)
|
||||
with con.begin() as cnx:
|
||||
cnx.execute(update_stmt_5)
|
||||
cnx.execute(drop_stmt)
|
||||
return print('END update')
|
||||
73
vrac/Modif_caract_connect.py
Normal file
73
vrac/Modif_caract_connect.py
Normal file
@ -0,0 +1,73 @@
|
||||
#!/usr/bin/env python3
|
||||
# -*- coding: UTF-8 -*-
|
||||
import pandas as pd
|
||||
import pyzh
|
||||
zh = pyzh.zh()
|
||||
|
||||
con = pyzh.con
|
||||
sch = 'zones_humides'
|
||||
lst_site_old = ['38RD0146','38RD0147']
|
||||
lst_site_new = ['38RD0164','38RD0165']
|
||||
df = zh.get_connex(id_site=lst_site_old)
|
||||
geomsite = zh.get_sitesGeom(id_site=lst_site_new)
|
||||
aut = pyzh.pers.get_auteur()
|
||||
|
||||
tab = 'r_site_type_connect'
|
||||
rtab_aut = 'r_rsiteconnect_auteur'
|
||||
id_rsiteaut = 'id_siteconnect'
|
||||
date_champ = 'date_conne'
|
||||
nom_champ = 'connexion'
|
||||
id_champ = 'id_param_connect'
|
||||
delim = zh._get_param(param_table='param_type_connect', type_court=False)
|
||||
|
||||
|
||||
df.drop(
|
||||
columns=['id','valid', 'date_geom', 'auteur_geom', 'description','type','lb_hab_fr'],
|
||||
inplace=True,
|
||||
errors='ignore')
|
||||
|
||||
for i, s in enumerate(lst_site_new):
|
||||
df.loc[df.id_site==lst_site_old[i], 'id_site'] = s
|
||||
df.loc[df.id_site==s, ['id_geom_site']] = geomsite.loc[geomsite.id_site==s,'id'].values[0].astype(str)
|
||||
|
||||
df['id_geom_site'] = df.id_geom_site.astype(int)
|
||||
df[id_champ] = df[nom_champ]
|
||||
df[id_champ] = df[id_champ].replace(delim.nom.tolist(),delim.id.tolist())
|
||||
df['date'] = df[date_champ]
|
||||
|
||||
df.drop(columns=['id_site',nom_champ,date_champ], inplace=True)
|
||||
lst_idgeom = df.id_geom_site.unique().astype(str)
|
||||
|
||||
# check si data in bdd
|
||||
sql = 'select exists(select * from {sch}.{tab} where id_geom_site in ({lst_id}));'.format(
|
||||
sch=sch, tab=tab, lst_id=','.join(lst_idgeom)
|
||||
)
|
||||
res = pd.read_sql(sql,con)
|
||||
if res.exists[0]:
|
||||
# delete if exist
|
||||
sql = 'delete from {sch}.{tab} where id_geom_site in ({lst_id});'.format(
|
||||
sch=sch, tab=tab, lst_id=','.join(lst_idgeom)
|
||||
)
|
||||
pd.read_sql(sql,con)
|
||||
# insert new line in bdd
|
||||
col = df.columns[~df.columns.str.contains('auteur')]
|
||||
colaut = df.columns[df.columns.str.contains('auteur')]
|
||||
df[col].to_sql(
|
||||
tab, con, schema=sch,
|
||||
if_exists='append',index=False,method='multi'
|
||||
)
|
||||
# Récupération des nouveaux ids insérés
|
||||
sql = 'select * from {sch}.{tab} where id_geom_site in ({lst_id});'.format(
|
||||
sch=sch, tab=tab, lst_id=','.join(lst_idgeom)
|
||||
)
|
||||
res = pd.read_sql(sql,con)
|
||||
df = df.merge(res, how='left', on=[*col])
|
||||
|
||||
ins_aut = df[['id',*colaut]].copy()
|
||||
aut['nom_prenom'] = aut.nom + ' ' + aut.prenom
|
||||
aut.loc[aut.nom_prenom.isna(), 'nom_prenom'] = aut.loc[aut.nom_prenom.isna(), 'nom']
|
||||
ins_aut[colaut] = ins_aut[colaut].replace(aut.nom_prenom.tolist(), aut.id.tolist())
|
||||
ins_aut.columns = [id_rsiteaut, 'id_auteur']
|
||||
ins_aut.to_sql(
|
||||
rtab_aut, con, schema=sch,
|
||||
if_exists='append',index=False,method='multi')
|
||||
63
vrac/Modif_caract_delim.py
Normal file
63
vrac/Modif_caract_delim.py
Normal file
@ -0,0 +1,63 @@
|
||||
#!/usr/bin/env python3
|
||||
# -*- coding: UTF-8 -*-
|
||||
import pandas as pd
|
||||
import pyzh
|
||||
zh = pyzh.zh()
|
||||
|
||||
con = pyzh.con
|
||||
tab = 'r_site_critdelim'
|
||||
sch = 'zones_humides'
|
||||
|
||||
lst_site_old = ['38RD0146','38RD0147']
|
||||
lst_site_new = ['38RD0164','38RD0165']
|
||||
|
||||
df = zh.get_delim(id_site=lst_site_old)
|
||||
geomsite = zh.get_sitesGeom(id_site=lst_site_new)
|
||||
delim = zh._get_param(param_table='param_delim_fct',type_table='type_param_delim_fct')
|
||||
aut = pyzh.pers.get_auteur()
|
||||
|
||||
df.drop(columns=['id','valid', 'date_geom', 'auteur_geom', 'desc_param','type'], inplace=True)
|
||||
for i, s in enumerate(lst_site_new):
|
||||
df.loc[df.id_site==lst_site_old[i], 'id_site'] = s
|
||||
df.loc[df.id_site==s, ['id_geom_site']] = geomsite.loc[geomsite.id_site==s,'id'].values[0].astype(str)
|
||||
|
||||
df['id_geom_site'] = df.id_geom_site.astype(int)
|
||||
df['id_crit_delim'] = df.nom_crit
|
||||
df['id_crit_delim'] = df['id_crit_delim'].replace(delim.nom.tolist(),delim.id.tolist())
|
||||
df['date'] = df.date_critd
|
||||
|
||||
|
||||
df.drop(columns=['id_site','nom_crit','date_critd'], inplace=True)
|
||||
lst_idgeom = df.id_geom_site.unique().astype(str)
|
||||
|
||||
sql = 'select exists(select * from {sch}.{tab} where id_geom_site in ({lst_id}));'.format(
|
||||
sch=sch, tab=tab, lst_id=','.join(lst_idgeom)
|
||||
)
|
||||
res = pd.read_sql(sql,con)
|
||||
if res.exists[0]:
|
||||
sql = 'delete from {sch}.{tab} where id_geom_site in ({lst_id});'.format(
|
||||
sch=sch, tab=tab, lst_id=','.join(lst_idgeom)
|
||||
)
|
||||
pd.read_sql(sql,con)
|
||||
col = df.columns[~df.columns.str.contains('auteur')]
|
||||
colaut = df.columns[df.columns.str.contains('auteur')]
|
||||
df[col].to_sql(
|
||||
tab, con, schema=sch,
|
||||
if_exists='append',index=False,method='multi'
|
||||
)
|
||||
sql = 'select * from {sch}.{tab} where id_geom_site in ({lst_id});'.format(
|
||||
sch=sch, tab=tab, lst_id=','.join(lst_idgeom)
|
||||
)
|
||||
res = pd.read_sql(sql,con)
|
||||
df = df.merge(res, how='left', on=[*col])
|
||||
|
||||
ins_aut = df[['id',*colaut]].copy()
|
||||
aut['nom_prenom'] = aut.nom + ' ' + aut.prenom
|
||||
aut.loc[aut.nom_prenom.isna(), 'nom_prenom'] = aut.loc[aut.nom_prenom.isna(), 'nom']
|
||||
ins_aut[colaut] = ins_aut[colaut].replace(aut.nom_prenom.tolist(), aut.id.tolist())
|
||||
ins_aut.columns = ['id_sitedelim', 'id_auteur']
|
||||
ins_aut.to_sql(
|
||||
'r_rsitedelim_auteur', con, schema=sch,
|
||||
if_exists='append',index=False,method='multi')
|
||||
|
||||
|
||||
70
vrac/Modif_caract_fct.py
Normal file
70
vrac/Modif_caract_fct.py
Normal file
@ -0,0 +1,70 @@
|
||||
#!/usr/bin/env python3
|
||||
# -*- coding: UTF-8 -*-
|
||||
import pandas as pd
|
||||
import pyzh
|
||||
zh = pyzh.zh()
|
||||
|
||||
con = pyzh.con
|
||||
sch = 'zones_humides'
|
||||
lst_site_old = ['38RD0146','38RD0147']
|
||||
lst_site_new = ['38RD0164','38RD0165']
|
||||
df = zh.get_fct(id_site=lst_site_old)
|
||||
geomsite = zh.get_sitesGeom(id_site=lst_site_new)
|
||||
aut = pyzh.pers.get_auteur()
|
||||
|
||||
tab = 'r_site_fctecosociopatri'
|
||||
rtab_aut = 'r_rsitefct_auteur'
|
||||
id_rsiteaut = 'id_sitefct'
|
||||
delim = zh._get_param(param_table='param_fct_eco_socio_patri',type_table='type_param_fct')
|
||||
|
||||
|
||||
df.drop(
|
||||
columns=['id','valid', 'date_geom', 'auteur_geom', 'desc_param','type'],
|
||||
inplace=True,
|
||||
errors='ignore')
|
||||
|
||||
for i, s in enumerate(lst_site_new):
|
||||
df.loc[df.id_site==lst_site_old[i], 'id_site'] = s
|
||||
df.loc[df.id_site==s, ['id_geom_site']] = geomsite.loc[geomsite.id_site==s,'id'].values[0].astype(str)
|
||||
|
||||
df['id_geom_site'] = df.id_geom_site.astype(int)
|
||||
df['id_fct'] = df['nom_fct']
|
||||
df['id_fct'] = df['id_fct'].replace(delim.nom.tolist(),delim.id.tolist())
|
||||
df['date'] = df.date_fctec
|
||||
|
||||
df.drop(columns=['id_site','nom_fct','date_fctec'], inplace=True)
|
||||
lst_idgeom = df.id_geom_site.unique().astype(str)
|
||||
|
||||
# check si data in bdd
|
||||
sql = 'select exists(select * from {sch}.{tab} where id_geom_site in ({lst_id}));'.format(
|
||||
sch=sch, tab=tab, lst_id=','.join(lst_idgeom)
|
||||
)
|
||||
res = pd.read_sql(sql,con)
|
||||
if res.exists[0]:
|
||||
# delete if exist
|
||||
sql = 'delete from {sch}.{tab} where id_geom_site in ({lst_id});'.format(
|
||||
sch=sch, tab=tab, lst_id=','.join(lst_idgeom)
|
||||
)
|
||||
pd.read_sql(sql,con)
|
||||
# insert new line in bdd
|
||||
col = df.columns[~df.columns.str.contains('auteur')]
|
||||
colaut = df.columns[df.columns.str.contains('auteur')]
|
||||
df[col].to_sql(
|
||||
tab, con, schema=sch,
|
||||
if_exists='append',index=False,method='multi'
|
||||
)
|
||||
# Récupération des nouveaux ids insérés
|
||||
sql = 'select * from {sch}.{tab} where id_geom_site in ({lst_id});'.format(
|
||||
sch=sch, tab=tab, lst_id=','.join(lst_idgeom)
|
||||
)
|
||||
res = pd.read_sql(sql,con)
|
||||
df = df.merge(res, how='left', on=[*col])
|
||||
|
||||
ins_aut = df[['id',*colaut]].copy()
|
||||
aut['nom_prenom'] = aut.nom + ' ' + aut.prenom
|
||||
aut.loc[aut.nom_prenom.isna(), 'nom_prenom'] = aut.loc[aut.nom_prenom.isna(), 'nom']
|
||||
ins_aut[colaut] = ins_aut[colaut].replace(aut.nom_prenom.tolist(), aut.id.tolist())
|
||||
ins_aut.columns = [id_rsiteaut, 'id_auteur']
|
||||
ins_aut.to_sql(
|
||||
rtab_aut, con, schema=sch,
|
||||
if_exists='append',index=False,method='multi')
|
||||
73
vrac/Modif_caract_hab.py
Normal file
73
vrac/Modif_caract_hab.py
Normal file
@ -0,0 +1,73 @@
|
||||
#!/usr/bin/env python3
|
||||
# -*- coding: UTF-8 -*-
|
||||
import pandas as pd
|
||||
import pyzh
|
||||
zh = pyzh.zh()
|
||||
|
||||
con = pyzh.con
|
||||
sch = 'zones_humides'
|
||||
lst_site_old = ['38RD0146','38RD0147']
|
||||
lst_site_new = ['38RD0164','38RD0165']
|
||||
df = zh.get_habitat(id_site=lst_site_old)
|
||||
geomsite = zh.get_sitesGeom(id_site=lst_site_new)
|
||||
aut = pyzh.pers.get_auteur()
|
||||
|
||||
tab = 'r_site_habitat'
|
||||
rtab_aut = 'r_rsitehab_auteur'
|
||||
id_rsiteaut = 'id_sitehab'
|
||||
date_champ = 'date_habit'
|
||||
nom_champ = 'code_cb'
|
||||
id_champ = 'id_cb'
|
||||
# delim = zh._get_param(param_table='param_fct_eco_socio_patri',type_table='type_param_fct')
|
||||
|
||||
|
||||
df.drop(
|
||||
columns=['id','valid', 'date_geom', 'auteur_geom', 'desc_param','type','lb_hab_fr'],
|
||||
inplace=True,
|
||||
errors='ignore')
|
||||
|
||||
for i, s in enumerate(lst_site_new):
|
||||
df.loc[df.id_site==lst_site_old[i], 'id_site'] = s
|
||||
df.loc[df.id_site==s, ['id_geom_site']] = geomsite.loc[geomsite.id_site==s,'id'].values[0].astype(str)
|
||||
|
||||
df['id_geom_site'] = df.id_geom_site.astype(int)
|
||||
df[id_champ] = df[nom_champ]
|
||||
# df[id_champ] = df[id_champ].replace(delim.nom.tolist(),delim.id.tolist())
|
||||
df['date'] = df[date_champ]
|
||||
|
||||
df.drop(columns=['id_site',nom_champ,date_champ], inplace=True)
|
||||
lst_idgeom = df.id_geom_site.unique().astype(str)
|
||||
|
||||
# check si data in bdd
|
||||
sql = 'select exists(select * from {sch}.{tab} where id_geom_site in ({lst_id}));'.format(
|
||||
sch=sch, tab=tab, lst_id=','.join(lst_idgeom)
|
||||
)
|
||||
res = pd.read_sql(sql,con)
|
||||
if res.exists[0]:
|
||||
# delete if exist
|
||||
sql = 'delete from {sch}.{tab} where id_geom_site in ({lst_id});'.format(
|
||||
sch=sch, tab=tab, lst_id=','.join(lst_idgeom)
|
||||
)
|
||||
pd.read_sql(sql,con)
|
||||
# insert new line in bdd
|
||||
col = df.columns[~df.columns.str.contains('auteur')]
|
||||
colaut = df.columns[df.columns.str.contains('auteur')]
|
||||
df[col].to_sql(
|
||||
tab, con, schema=sch,
|
||||
if_exists='append',index=False,method='multi'
|
||||
)
|
||||
# Récupération des nouveaux ids insérés
|
||||
sql = 'select * from {sch}.{tab} where id_geom_site in ({lst_id});'.format(
|
||||
sch=sch, tab=tab, lst_id=','.join(lst_idgeom)
|
||||
)
|
||||
res = pd.read_sql(sql,con)
|
||||
df = df.merge(res, how='left', on=[*col])
|
||||
|
||||
ins_aut = df[['id',*colaut]].copy()
|
||||
aut['nom_prenom'] = aut.nom + ' ' + aut.prenom
|
||||
aut.loc[aut.nom_prenom.isna(), 'nom_prenom'] = aut.loc[aut.nom_prenom.isna(), 'nom']
|
||||
ins_aut[colaut] = ins_aut[colaut].replace(aut.nom_prenom.tolist(), aut.id.tolist())
|
||||
ins_aut.columns = [id_rsiteaut, 'id_auteur']
|
||||
ins_aut.to_sql(
|
||||
rtab_aut, con, schema=sch,
|
||||
if_exists='append',index=False,method='multi')
|
||||
81
vrac/Modif_caract_reghydro.py
Normal file
81
vrac/Modif_caract_reghydro.py
Normal file
@ -0,0 +1,81 @@
|
||||
#!/usr/bin/env python3
|
||||
# -*- coding: UTF-8 -*-
|
||||
import pandas as pd
|
||||
import pyzh
|
||||
zh = pyzh.zh()
|
||||
|
||||
con = pyzh.con
|
||||
sch = 'zones_humides'
|
||||
lst_site_old = ['38RD0146','38RD0147']
|
||||
lst_site_new = ['38RD0164','38RD0165']
|
||||
df = zh.get_regHydro(id_site=lst_site_old)
|
||||
geomsite = zh.get_sitesGeom(id_site=lst_site_new)
|
||||
aut = pyzh.pers.get_auteur()
|
||||
|
||||
|
||||
tab = 'r_site_reghydro'
|
||||
rtab_aut = 'r_rsitehydro_auteur'
|
||||
id_rsiteaut = 'id_sitehydro'
|
||||
date_champ = 'date_reghy'
|
||||
nom_champ1 = 'regime_hydri'
|
||||
nom_champ2 = 'permanence'
|
||||
id_champ1 = 'id_reg_hydro'
|
||||
id_champ2 = 'id_permanence'
|
||||
delim1 = zh._get_param(param_table='param_reg_hydro', type_court=False)
|
||||
delim2 = zh._get_param(param_table='param_permanence', type_court=False)
|
||||
|
||||
col_desc = df.columns[df.columns.str.contains('desc')]
|
||||
df.drop(
|
||||
columns=['id','valid', 'date_geom', 'auteur_geom', *col_desc,'type','lb_hab_fr'],
|
||||
inplace=True,
|
||||
errors='ignore')
|
||||
|
||||
for i, s in enumerate(lst_site_new):
|
||||
df.loc[df.id_site==lst_site_old[i], 'id_site'] = s
|
||||
df.loc[df.id_site==s, ['id_geom_site']] = geomsite.loc[geomsite.id_site==s,'id'].values[0].astype(str)
|
||||
|
||||
df['id_geom_site'] = df.id_geom_site.astype(int)
|
||||
df[id_champ1] = df[nom_champ1]
|
||||
df[id_champ2] = df[nom_champ2]
|
||||
df[id_champ1] = df[id_champ1].replace(delim1.nom.tolist(),delim1.id.tolist())
|
||||
df[id_champ2] = df[id_champ2].replace(delim2.nom.tolist(),delim2.id.tolist())
|
||||
df['date'] = df[date_champ]
|
||||
df.in_out = df.in_out == 'entree'
|
||||
|
||||
|
||||
df.drop(columns=['id_site',nom_champ1,nom_champ2,date_champ], inplace=True)
|
||||
lst_idgeom = df.id_geom_site.unique().astype(str)
|
||||
|
||||
# check si data in bdd
|
||||
sql = 'select exists(select * from {sch}.{tab} where id_geom_site in ({lst_id}));'.format(
|
||||
sch=sch, tab=tab, lst_id=','.join(lst_idgeom)
|
||||
)
|
||||
res = pd.read_sql(sql,con)
|
||||
if res.exists[0]:
|
||||
# delete if exist
|
||||
sql = 'delete from {sch}.{tab} where id_geom_site in ({lst_id});'.format(
|
||||
sch=sch, tab=tab, lst_id=','.join(lst_idgeom)
|
||||
)
|
||||
pd.read_sql(sql,con)
|
||||
# insert new line in bdd
|
||||
col = df.columns[~df.columns.str.contains('auteur')]
|
||||
colaut = df.columns[df.columns.str.contains('auteur')]
|
||||
df[col].to_sql(
|
||||
tab, con, schema=sch,
|
||||
if_exists='append',index=False,method='multi'
|
||||
)
|
||||
# Récupération des nouveaux ids insérés
|
||||
sql = 'select * from {sch}.{tab} where id_geom_site in ({lst_id});'.format(
|
||||
sch=sch, tab=tab, lst_id=','.join(lst_idgeom)
|
||||
)
|
||||
res = pd.read_sql(sql,con)
|
||||
df = df.merge(res, how='left', on=[*col])
|
||||
|
||||
ins_aut = df[['id',*colaut]].copy()
|
||||
aut['nom_prenom'] = aut.nom + ' ' + aut.prenom
|
||||
aut.loc[aut.nom_prenom.isna(), 'nom_prenom'] = aut.loc[aut.nom_prenom.isna(), 'nom']
|
||||
ins_aut[colaut] = ins_aut[colaut].replace(aut.nom_prenom.tolist(), aut.id.tolist())
|
||||
ins_aut.columns = [id_rsiteaut, 'id_auteur']
|
||||
ins_aut.to_sql(
|
||||
rtab_aut, con, schema=sch,
|
||||
if_exists='append',index=False,method='multi')
|
||||
82
vrac/Modif_caract_sub.py
Normal file
82
vrac/Modif_caract_sub.py
Normal file
@ -0,0 +1,82 @@
|
||||
#!/usr/bin/env python3
|
||||
# -*- coding: UTF-8 -*-
|
||||
import pandas as pd
|
||||
import pyzh
|
||||
zh = pyzh.zh()
|
||||
|
||||
con = pyzh.con
|
||||
sch = 'zones_humides'
|
||||
lst_site_old = ['38RD0146','38RD0147']
|
||||
lst_site_new = ['38RD0164','38RD0165']
|
||||
df = zh.get_sub(id_site=lst_site_old)
|
||||
geomsite = zh.get_sitesGeom(id_site=lst_site_new)
|
||||
aut = pyzh.pers.get_auteur()
|
||||
|
||||
tab = 'r_site_sub'
|
||||
rtab_aut = 'r_rsitesub_auteur'
|
||||
id_rsiteaut = 'id_sitesub'
|
||||
date_champ = 'date_sub'
|
||||
nom_champ1 = 'Submersion étendue'
|
||||
nom_champ2 = 'Submersion fréquente'
|
||||
nom_champ3 = 'origine_sub'
|
||||
id_champ1 = 'id_freqsub'
|
||||
id_champ2 = 'id_etendsub'
|
||||
id_champ3 = 'id_origsub'
|
||||
delim = zh._get_param(param_table='param_sub',type_table='type_param_sub', type_court=False)
|
||||
delim1 = delim.loc[delim.type == nom_champ1]
|
||||
delim2 = delim.loc[delim.type == nom_champ2]
|
||||
|
||||
|
||||
df.drop(
|
||||
columns=['id','valid', 'date_geom', 'auteur_geom', 'desc_param','type','lb_hab_fr'],
|
||||
inplace=True,
|
||||
errors='ignore')
|
||||
|
||||
for i, s in enumerate(lst_site_new):
|
||||
df.loc[df.id_site==lst_site_old[i], 'id_site'] = s
|
||||
df.loc[df.id_site==s, ['id_geom_site']] = geomsite.loc[geomsite.id_site==s,'id'].values[0].astype(str)
|
||||
|
||||
df['id_geom_site'] = df.id_geom_site.astype(int)
|
||||
df[id_champ1] = df[nom_champ1]
|
||||
df[id_champ2] = df[nom_champ2]
|
||||
df[id_champ3] = df[nom_champ3]
|
||||
df[id_champ1] = df[id_champ1].replace(delim1.nom.tolist(),delim1.id.tolist())
|
||||
df[id_champ2] = df[id_champ2].replace(delim2.nom.tolist(),delim2.id.tolist())
|
||||
df['date'] = df[date_champ]
|
||||
|
||||
df.drop(columns=['id_site',nom_champ1,nom_champ2,nom_champ3,date_champ], inplace=True)
|
||||
lst_idgeom = df.id_geom_site.unique().astype(str)
|
||||
|
||||
# check si data in bdd
|
||||
sql = 'select exists(select * from {sch}.{tab} where id_geom_site in ({lst_id}));'.format(
|
||||
sch=sch, tab=tab, lst_id=','.join(lst_idgeom)
|
||||
)
|
||||
res = pd.read_sql(sql,con)
|
||||
if res.exists[0]:
|
||||
# delete if exist
|
||||
sql = 'delete from {sch}.{tab} where id_geom_site in ({lst_id});'.format(
|
||||
sch=sch, tab=tab, lst_id=','.join(lst_idgeom)
|
||||
)
|
||||
pd.read_sql(sql,con)
|
||||
# insert new line in bdd
|
||||
col = df.columns[~df.columns.str.contains('auteur')]
|
||||
colaut = df.columns[df.columns.str.contains('auteur')]
|
||||
df[col].to_sql(
|
||||
tab, con, schema=sch,
|
||||
if_exists='append',index=False,method='multi'
|
||||
)
|
||||
# Récupération des nouveaux ids insérés
|
||||
sql = 'select * from {sch}.{tab} where id_geom_site in ({lst_id});'.format(
|
||||
sch=sch, tab=tab, lst_id=','.join(lst_idgeom)
|
||||
)
|
||||
res = pd.read_sql(sql,con)
|
||||
df = df.merge(res, how='left', on=[*col])
|
||||
|
||||
ins_aut = df[['id',*colaut]].copy()
|
||||
aut['nom_prenom'] = aut.nom + ' ' + aut.prenom
|
||||
aut.loc[aut.nom_prenom.isna(), 'nom_prenom'] = aut.loc[aut.nom_prenom.isna(), 'nom']
|
||||
ins_aut[colaut] = ins_aut[colaut].replace(aut.nom_prenom.tolist(), aut.id.tolist())
|
||||
ins_aut.columns = [id_rsiteaut, 'id_auteur']
|
||||
ins_aut.to_sql(
|
||||
rtab_aut, con, schema=sch,
|
||||
if_exists='append',index=False,method='multi')
|
||||
83
vrac/Modif_caract_usageprocess.py
Normal file
83
vrac/Modif_caract_usageprocess.py
Normal file
@ -0,0 +1,83 @@
|
||||
#!/usr/bin/env python3
|
||||
# -*- coding: UTF-8 -*-
|
||||
import pandas as pd
|
||||
import pyzh
|
||||
zh = pyzh.zh()
|
||||
|
||||
con = pyzh.con
|
||||
sch = 'zones_humides'
|
||||
lst_site_old = ['38RD0146','38RD0147']
|
||||
lst_site_new = ['38RD0164','38RD0165']
|
||||
df = zh.get_usageprocess(id_site=lst_site_old)
|
||||
geomsite = zh.get_sitesGeom(id_site=lst_site_new)
|
||||
aut = pyzh.pers.get_auteur()
|
||||
|
||||
tab = 'r_site_usageprocess'
|
||||
rtab_aut = 'r_rsiteusage_auteur'
|
||||
id_rsiteaut = 'id_siteusage'
|
||||
date_champ = 'date_usage'
|
||||
nom_champ1 = 'activite_hum'
|
||||
nom_champ2 = 'impact'
|
||||
nom_champ3 = 'position'
|
||||
id_champ1 = 'id_activ_hum'
|
||||
id_champ2 = 'id_impact'
|
||||
id_champ3 = 'id_position'
|
||||
delim1 = zh._get_param(param_table='param_activ_hum', type_court=False)
|
||||
delim2 = zh._get_param(param_table='param_impact', type_court=False)
|
||||
delim3 = zh._get_param(param_table='param_position', type_court=False)
|
||||
|
||||
col_desc = df.columns[df.columns.str.contains('desc')]
|
||||
df.drop(
|
||||
columns=['id','valid', 'date_geom', 'auteur_geom', *col_desc,'description','type','lb_hab_fr'],
|
||||
inplace=True,
|
||||
errors='ignore')
|
||||
|
||||
for i, s in enumerate(lst_site_new):
|
||||
df.loc[df.id_site==lst_site_old[i], 'id_site'] = s
|
||||
df.loc[df.id_site==s, ['id_geom_site']] = geomsite.loc[geomsite.id_site==s,'id'].values[0].astype(str)
|
||||
|
||||
df['id_geom_site'] = df.id_geom_site.astype(int)
|
||||
df[id_champ1] = df[nom_champ1]
|
||||
df[id_champ2] = df[nom_champ2]
|
||||
df[id_champ3] = df[nom_champ3]
|
||||
df[id_champ1] = df[id_champ1].replace(delim1.nom.tolist(),delim1.id.tolist())
|
||||
df[id_champ2] = df[id_champ2].replace(delim2.nom.tolist(),delim2.id.tolist())
|
||||
df[id_champ3] = df[id_champ3].replace(delim3.nom.tolist(),delim3.id.tolist())
|
||||
df['date'] = df[date_champ]
|
||||
|
||||
df.drop(columns=['id_site',nom_champ1,nom_champ2,nom_champ3,date_champ], inplace=True)
|
||||
lst_idgeom = df.id_geom_site.unique().astype(str)
|
||||
|
||||
# check si data in bdd
|
||||
sql = 'select exists(select * from {sch}.{tab} where id_geom_site in ({lst_id}));'.format(
|
||||
sch=sch, tab=tab, lst_id=','.join(lst_idgeom)
|
||||
)
|
||||
res = pd.read_sql(sql,con)
|
||||
if res.exists[0]:
|
||||
# delete if exist
|
||||
sql = 'delete from {sch}.{tab} where id_geom_site in ({lst_id});'.format(
|
||||
sch=sch, tab=tab, lst_id=','.join(lst_idgeom)
|
||||
)
|
||||
pd.read_sql(sql,con)
|
||||
# insert new line in bdd
|
||||
col = df.columns[~df.columns.str.contains('auteur')]
|
||||
colaut = df.columns[df.columns.str.contains('auteur')]
|
||||
df[col].to_sql(
|
||||
tab, con, schema=sch,
|
||||
if_exists='append',index=False,method='multi'
|
||||
)
|
||||
# Récupération des nouveaux ids insérés
|
||||
sql = 'select * from {sch}.{tab} where id_geom_site in ({lst_id});'.format(
|
||||
sch=sch, tab=tab, lst_id=','.join(lst_idgeom)
|
||||
)
|
||||
res = pd.read_sql(sql,con)
|
||||
df = df.merge(res, how='left', on=[*col])
|
||||
|
||||
ins_aut = df[['id',*colaut]].copy()
|
||||
aut['nom_prenom'] = aut.nom + ' ' + aut.prenom
|
||||
aut.loc[aut.nom_prenom.isna(), 'nom_prenom'] = aut.loc[aut.nom_prenom.isna(), 'nom']
|
||||
ins_aut[colaut] = ins_aut[colaut].replace(aut.nom_prenom.tolist(), aut.id.tolist())
|
||||
ins_aut.columns = [id_rsiteaut, 'id_auteur']
|
||||
ins_aut.to_sql(
|
||||
rtab_aut, con, schema=sch,
|
||||
if_exists='append',index=False,method='multi')
|
||||
4
wfs/__init__.py
Normal file
4
wfs/__init__.py
Normal file
@ -0,0 +1,4 @@
|
||||
#!/usr/bin/env python3
|
||||
# -*- coding: UTF-8 -*-
|
||||
|
||||
from .wfs import *
|
||||
BIN
wfs/__pycache__/__init__.cpython-38.pyc
Normal file
BIN
wfs/__pycache__/__init__.cpython-38.pyc
Normal file
Binary file not shown.
BIN
wfs/__pycache__/wfs.cpython-38.pyc
Normal file
BIN
wfs/__pycache__/wfs.cpython-38.pyc
Normal file
Binary file not shown.
24
wfs/wfs.py
Normal file
24
wfs/wfs.py
Normal file
@ -0,0 +1,24 @@
|
||||
#!/usr/bin/env python3
|
||||
# -*- coding: UTF-8 -*-
|
||||
|
||||
from owslib.wfs import WebFeatureService
|
||||
|
||||
def get_wfs(url, layer, bbox=None):
|
||||
from geopandas import read_file
|
||||
from requests import Request
|
||||
wfs = WebFeatureService(url=url)
|
||||
item = dict(wfs.items())[layer]
|
||||
crs = item.crsOptions[0].getcode()
|
||||
params = dict(service='WFS', version=wfs.version, request='GetFeature',
|
||||
typeName=layer)
|
||||
q = Request('GET', url, params=params).prepare().url
|
||||
data = read_file(q, bbox=bbox)
|
||||
data.set_crs(crs=crs, inplace=True)
|
||||
if crs != 'EPSG:2154':
|
||||
data.to_crs(epsg=2154, inplace=True)
|
||||
return data
|
||||
|
||||
def list_layer(url):
|
||||
wfs = WebFeatureService(url=url)
|
||||
lst = list(wfs.contents)
|
||||
return lst
|
||||
684
zh.py
Normal file
684
zh.py
Normal file
@ -0,0 +1,684 @@
|
||||
#!/usr/bin/env python3
|
||||
# -*- coding: UTF-8 -*-
|
||||
#Nom : : zh.py
|
||||
#Description :
|
||||
#Copyright : 2021, CEN38
|
||||
#Auteur : Colas Geier
|
||||
#Version : 1.0
|
||||
|
||||
|
||||
|
||||
import pandas as pd
|
||||
# import pandas_access as mdb
|
||||
# import numpy as np
|
||||
# from sqlalchemy.sql.expression import column
|
||||
from sqlalchemy import create_engine
|
||||
from geoalchemy2 import Geometry
|
||||
from .pers.pers import _get_table
|
||||
from .sites.sites import _get_typ_milieux
|
||||
from .tools import _get_relation_autor
|
||||
|
||||
|
||||
#####################################
|
||||
### schema personnes ###
|
||||
#####################################
|
||||
# class pers:
|
||||
# def __init__(self):
|
||||
# from .params import con
|
||||
# self.schema = 'personnes'
|
||||
# self.con = con
|
||||
# # self._get_table = _get_table
|
||||
|
||||
# def get_auteur(self, nom=None, prenom=None):
|
||||
# sql = 'SELECT * FROM %s.personne'%self.schema
|
||||
# if nom or prenom : sql = sql + ' WHERE '
|
||||
# if nom :
|
||||
# sql = sql + 'nom IN %(nom)s'
|
||||
# nom = to_upper(nom)
|
||||
# if nom and prenom : sql = sql + ' AND '
|
||||
# if prenom :
|
||||
# sql = sql + 'prenom IN %(prenom)s'
|
||||
# prenom = to_upperfirst(prenom)
|
||||
# df = pd.read_sql(
|
||||
# sql = sql,
|
||||
# con = self.con,
|
||||
# params = {'nom': to_tuple(nom), 'prenom': to_tuple(prenom) })
|
||||
# return df
|
||||
|
||||
# def get_organisme(self, ids=None, nom=None):
|
||||
# table = 'organisme'
|
||||
# return _get_table(self.con, self.schema, table, ids=ids, nom=nom)
|
||||
|
||||
#####################################
|
||||
### schema sites ###
|
||||
#####################################
|
||||
# class sites:
|
||||
# def __init__(self):
|
||||
# from .params import con
|
||||
# from .pers import pers
|
||||
# self.schema = 'sites'
|
||||
# self.con = con
|
||||
# self.typ_milieux = self._get_typ_milieux()
|
||||
# self.typo_sdage = self._get_typo_sdage()
|
||||
# self.typ_site = self._get_typ_site()
|
||||
# self.auteur = pers.get_auteur()
|
||||
# self.organisme = pers.get_organisme()
|
||||
|
||||
# def _get_typ_milieux(self, ids=None, nom=None):
|
||||
# table = 'type_milieu'
|
||||
# df = _get_table(self.con, self.schema, table, ids=ids, nom=nom)
|
||||
# return df
|
||||
|
||||
# def _get_typo_sdage(self, ids=None, nom=None):
|
||||
# table = 'typo_sdage'
|
||||
# df = _get_table(self.con, self.schema, table, ids=ids, nom=nom)
|
||||
# return df
|
||||
|
||||
# def _get_typ_site(self, ids=None, nom=None):
|
||||
# table = 'type_site'
|
||||
# df = _get_table(self.con, self.schema, table, ids=ids, nom=nom)
|
||||
# return df
|
||||
|
||||
# def _merge_orga(self, df, split_cols):
|
||||
# org = self.organisme
|
||||
# aut = self.auteur
|
||||
# df = df.copy()
|
||||
# for c in split_cols:
|
||||
# if not isinstance(df[c], int): df[c] = df[c].astype(float)
|
||||
# df[c].replace(aut.id.tolist(), aut.id_organisme.tolist(), inplace=True)
|
||||
# df[c].replace(org.id.tolist(), org.nom.tolist(), inplace=True)
|
||||
# df['organisme'] = None
|
||||
# for c in split_cols:
|
||||
# df.loc[df.organisme.isna(), 'organisme'] = df.loc[df['organisme'].isna(), c]
|
||||
# for c in split_cols:
|
||||
# comp = df.loc[~df[c].isna(),'organisme'].compare(df.loc[~df[c].isna(), c])
|
||||
# if not comp.empty:
|
||||
# comp['test'] = comp.apply(lambda x: x['other'] in x['self'], axis=1)
|
||||
# comp = comp[~comp.test]
|
||||
# if not comp.empty:
|
||||
# df.loc[comp.index,'organisme'] = comp.self + ' & ' + comp.other
|
||||
# df.drop(columns=split_cols, inplace=True)
|
||||
# return df
|
||||
|
||||
# def _merge_author(self, df, col_aut, orga=False):
|
||||
# # récupération des auteurs
|
||||
# aut = self.auteur.fillna('')
|
||||
# aut['nom_prenom'] = (aut['nom'] + ' ' + aut['prenom']).str.strip()
|
||||
# aut['id'] = aut['id'].astype(str)
|
||||
# # merge des auteurs
|
||||
# r_id = df[['id', col_aut]].copy()
|
||||
# r_idSplit = r_id[col_aut].str.split(' & ', expand=True)
|
||||
# r_id = r_id.join(r_idSplit)
|
||||
# cSplit = r_idSplit.shape[1]
|
||||
# cSplit = list(range(cSplit))
|
||||
# if orga:
|
||||
# # récup des organismes
|
||||
# org = self._merge_orga(r_id, cSplit)
|
||||
# r_id[cSplit] = r_id[cSplit].replace(aut['id'].tolist(),aut['nom_prenom'].tolist())
|
||||
# r_id = _aggr_cols(r_id,cSplit,' & ') \
|
||||
# .rename(columns={'aggreg': 'auteur'}) \
|
||||
# .drop(columns=cSplit)
|
||||
# if orga:
|
||||
# # merge des organismes
|
||||
# r_id = pd.merge(r_id,org, on=['id', col_aut])
|
||||
# df = pd.merge(df,r_id, on=['id', col_aut]) \
|
||||
# .drop(columns=[col_aut])
|
||||
# return df
|
||||
|
||||
# def _merge_relation(self, df, table, schema, id=None, left_id=None,right_id=None):
|
||||
# con = self.con
|
||||
# if id:
|
||||
# params = {id: df[id].tolist() }
|
||||
# elif left_id and right_id:
|
||||
# params = {right_id: df[left_id].tolist() }
|
||||
# mrg = _get_table(con, schema, table, params_col=params)
|
||||
# if table == 'r_sites_auteur' or table == 'r_geomsites_auteur':
|
||||
# mrg = mrg[[right_id,'id_auteur']].groupby(
|
||||
# [right_id])['id_auteur'].apply(lambda x: ' & '.join(x.astype(str)))
|
||||
# mrg = pd.DataFrame(data=mrg)
|
||||
# if id:
|
||||
# df = pd.merge(df,mrg, how='left', on=id)
|
||||
# elif left_id and right_id:
|
||||
# df = pd.merge(df,mrg, how='left', left_on=left_id, right_on=right_id)
|
||||
# return df
|
||||
|
||||
|
||||
# def get_sitesInfos(self, ids=None, nom=None, columns=None, with_nameOrga=False, details=False, params_col={}):
|
||||
# drop = []
|
||||
# table = 'sites'
|
||||
# df = _get_table(self.con, self.schema, table, ids=ids, nom=nom, cols=columns, params_col=params_col)
|
||||
# # récupération des auteurs
|
||||
# if 'id_auteur' in df.columns:
|
||||
# df.drop(columns='id_auteur', inplace=True)
|
||||
# df = _merge_relation(df=df,table='r_sites_auteur',schema=self.schema, left_id='id',right_id='id_site')
|
||||
# df = _merge_author(df=df, col_aut='id_auteur', orga=with_nameOrga)
|
||||
# # merge type_site
|
||||
# if 'id_type_site' in df.columns:
|
||||
# df = pd.merge(df, self.typ_site, how='left', left_on='id_type_site', right_on='id', suffixes=('','_y') ) \
|
||||
# .drop(columns=['id_type_site', 'id_y']) \
|
||||
# .rename(columns={'nom_y': 'type_site', 'description': 'desc_type_site'})
|
||||
# drop += ['desc_type_site']
|
||||
# # merge typo_sdage
|
||||
# if 'id_typo_sdage' in df.columns:
|
||||
# df = pd.merge(df, self.typo_sdage, how='left', left_on='id_typo_sdage', right_on='id', suffixes=('','_y') ) \
|
||||
# .drop(columns=['id_typo_sdage', 'id_y']) \
|
||||
# .rename(columns={'nom_y': 'typo_sdage', 'description': 'desc_typo_sdage'})
|
||||
# drop += ['desc_typo_sdage']
|
||||
# # merge type_milieu
|
||||
# if 'id_type_milieu' in df.columns:
|
||||
# df = pd.merge(df, self.typ_milieux, how='left', left_on='id_type_milieu', right_on='id', suffixes=('','_y') ) \
|
||||
# .drop(columns=['id_type_milieu', 'id_y']) \
|
||||
# .rename(columns={'nom_y': 'type_milieu', 'description': 'desc_type_milieu', 'nom_court': 'nom_court_milieu'})
|
||||
# drop += ['desc_type_milieu', 'nom_court_milieu']
|
||||
|
||||
# if not details:
|
||||
# df.drop(columns=drop, inplace=True)
|
||||
|
||||
# return df.sort_values('id')
|
||||
|
||||
# def get_sitesGeom(self, id_site=None, nom_site=None, columns=None, last_update=False, with_nameOrga=False, params_col={}):
|
||||
# # from shapely.wkb import loads
|
||||
# # import geopandas as gpd # set_geometry
|
||||
|
||||
# if columns:
|
||||
# if not isinstance(columns, list): columns = [columns]
|
||||
# if 'id' not in columns: columns.insert(0,'id')
|
||||
# if 'id_site' not in columns: columns.insert(1,'id_site')
|
||||
# if 'geom' not in columns: columns.insert(2,'geom')
|
||||
|
||||
# table = 'sites'
|
||||
# df = _get_table(self.con, self.schema, table, ids=id_site, nom=nom_site, cols='id', params_col=params_col)
|
||||
# idSite = df.id.tolist()
|
||||
# table = 'r_sites_geom'
|
||||
# df = _get_table(self.con, self.schema, table, params_col={'id_site':idSite}, cols=columns)
|
||||
# if last_update:
|
||||
# df.drop_duplicates(subset=['id_site'], keep='last', inplace=True)
|
||||
# df.reset_index(inplace=True, drop=True)
|
||||
|
||||
|
||||
# # df = _set_geom(df)
|
||||
# # df['geom'] = [(loads(geom, hex=True)) for geom in df['geom']]
|
||||
# # df = df.set_geometry('geom', crs='EPSG:2154')
|
||||
# # merge auteur
|
||||
# if 'id_auteur' in df.columns:
|
||||
# df.drop(columns='id_auteur', inplace=True)
|
||||
# df = _merge_relation(df=df,table='r_geomsites_auteur',schema=self.schema, left_id='id',right_id='id_geom_site')
|
||||
# df = _merge_author(df=df, col_aut='id_auteur', orga=with_nameOrga)
|
||||
|
||||
# return df
|
||||
|
||||
|
||||
|
||||
#####################################
|
||||
### schema zh ###
|
||||
#####################################
|
||||
class zh():
|
||||
def __init__(self):
|
||||
from .params import con
|
||||
from .tools import _get_relation_tab
|
||||
self.schema = 'zones_humides'
|
||||
self.con = con
|
||||
self.typ_milieux = _get_typ_milieux(nom='Tourbières et marais')
|
||||
self.id_milieux = self.typ_milieux.id.values[0]
|
||||
self._get_relation_tab = _get_relation_tab
|
||||
self.lst_tab = con.dialect.get_table_names(con,schema=self.schema)
|
||||
self.columns_rSiteFcts = con.dialect.get_columns(con,schema=self.schema,table_name='r_site_fctecosociopatri')
|
||||
self.columns_r_SiteCon = con.dialect.get_columns(con,schema=self.schema,table_name='r_site_type_connect')
|
||||
self.columns_rSiteCritDelim = con.dialect.get_columns(con,schema=self.schema,table_name='r_site_critdelim')
|
||||
self.columns_r_SiteHabs = con.dialect.get_columns(con,schema=self.schema,table_name='r_site_habitat')
|
||||
self.columns_rSiteRegHyd = con.dialect.get_columns(con,schema=self.schema,table_name='r_site_reghydro')
|
||||
self.columns_r_SiteSub = con.dialect.get_columns(con,schema=self.schema,table_name='r_site_sub')
|
||||
self.columns_r_SiteUsgPrss = con.dialect.get_columns(con,schema=self.schema,table_name='r_site_usageprocess')
|
||||
|
||||
|
||||
def _get_param(self, param_table, type_table=None, type_court=True):
|
||||
if type_table:
|
||||
typ = _get_table(self.con, self.schema, table=type_table)
|
||||
par = _get_table(self.con, self.schema, table=param_table, params_col={'id_type':typ.id.tolist()})
|
||||
df = pd.merge(par, typ, left_on='id_type', right_on='id', how='left', suffixes=(None, '_typ')) \
|
||||
.drop(columns=['id_type','id_typ'])
|
||||
if 'description_typ' in df.columns: del df['description_typ']
|
||||
if type_court: df = df.drop(columns=['nom_typ']).rename(columns={'nom_court_typ':'type'})
|
||||
else : df = df.drop(columns=['nom_court_typ'],errors='ignore').rename(columns={'nom_typ':'type'})
|
||||
df = df.set_index(['id', 'type']).reset_index()
|
||||
else:
|
||||
df = _get_table(self.con, self.schema, table=param_table)
|
||||
|
||||
return df
|
||||
|
||||
|
||||
# def _get_relation_tab(self, tab, id_site=None, nom_site=None, last_update=False, geom=False,params_col={}):
|
||||
# table = 'sites'
|
||||
# dfSG = get_sitesGeom(columns='date', id_site=id_site, nom_site=nom_site, last_update=last_update,params_col=params_col)
|
||||
# if not geom and not dfSG.empty:
|
||||
# dfSG.drop('geom',1,inplace=True)
|
||||
# ids = dfSG.id.tolist()
|
||||
# table = tab
|
||||
|
||||
# if ids :
|
||||
# df = _get_table(self.con, self.schema, table, params_col={'id_geom_site':ids})
|
||||
# # if not df.empty:
|
||||
# df = pd.merge(dfSG,df, how='left', left_on='id', right_on='id_geom_site', suffixes=('_x', None)) \
|
||||
# .drop(['id_x','id_geom_site'],1) \
|
||||
# .set_index('id').reset_index()
|
||||
# return df
|
||||
# else:
|
||||
# print('PAS de géometries de sites sélectionnées ...')
|
||||
|
||||
|
||||
def get_delim(self, id_site=None, nom_site=None, last_update=True, geom=False,
|
||||
nom_type_court=True,statut='actif'):
|
||||
|
||||
table = 'r_site_critdelim'
|
||||
df = self._get_relation_tab(
|
||||
schema=self.schema,tab=table,id_site=id_site,nom_site=nom_site,last_update=last_update,geom=geom,
|
||||
params_col={'id_type_milieu':self.id_milieux.astype(str)}, statut=statut)
|
||||
dic = self._get_param(type_table='type_param_delim_fct', param_table='param_delim_fct', type_court=nom_type_court)
|
||||
|
||||
if not df.empty:
|
||||
df = _get_relation_autor(df, relation_tab='r_rsitedelim_auteur', schema=self.schema,
|
||||
id_df='id', id_relation='id_sitedelim', id_rela_auth='id_auteur' )
|
||||
|
||||
df = pd.merge(df,dic, how='left', left_on='id_crit_delim', right_on='id', suffixes=(None,'_y')) \
|
||||
.drop(['id_y','id_crit_delim'],1) \
|
||||
.rename(columns={'description_y':'desc_param', 'nom_court':'nom_court_crit','nom':'nom_crit'}) \
|
||||
.sort_values('id_site')
|
||||
|
||||
if df.nom_court_crit.isnull().sum() == df.shape[0] : del df['nom_court_crit']
|
||||
# typ = df.type.unique()
|
||||
# x = {}
|
||||
# for t in typ:
|
||||
# x[t] = df[df.type == t]
|
||||
# x[t] = x[t].rename(columns={'nom': t}) \
|
||||
# .reset_index(drop=True)
|
||||
|
||||
return df
|
||||
|
||||
|
||||
def get_fct(self, id_site=None, nom_site=None, last_update=True, geom=False, nom_type_court=True,statut='actif'):
|
||||
|
||||
table = 'r_site_fctecosociopatri'
|
||||
df = self._get_relation_tab(schema=self.schema,tab=table,id_site=id_site,nom_site=nom_site,last_update=last_update,geom=geom,
|
||||
params_col={'id_type_milieu':self.id_milieux.astype(str)}, statut=statut)
|
||||
dic = self._get_param(type_table='type_param_fct', param_table='param_fct_eco_socio_patri', type_court=nom_type_court)
|
||||
|
||||
if not df.empty:
|
||||
df = _get_relation_autor(df, relation_tab='r_rsitefct_auteur', schema=self.schema,
|
||||
id_df='id', id_relation='id_sitefct', id_rela_auth='id_auteur' )
|
||||
|
||||
df = pd.merge(df,dic, how='left', left_on='id_fct', right_on='id', suffixes=(None,'_y')) \
|
||||
.drop(['id_y','id_fct'],1) \
|
||||
.rename(columns={'description_y':'desc_param', 'nom_court':'nom_court_fct','nom':'nom_fct'}) \
|
||||
.sort_values('id_site')
|
||||
|
||||
if df.nom_court_fct.isnull().sum() == df.shape[0] : del df['nom_court_fct']
|
||||
|
||||
return df
|
||||
|
||||
|
||||
def get_connex(self, id_site=None, nom_site=None, last_update=True, geom=False,statut='actif'):
|
||||
|
||||
table = 'r_site_type_connect'
|
||||
df = self._get_relation_tab(schema=self.schema,tab=table,id_site=id_site,nom_site=nom_site,last_update=last_update,geom=geom,
|
||||
params_col={'id_type_milieu':self.id_milieux.astype(str)}, statut=statut)
|
||||
dic = self._get_param(param_table='param_type_connect')
|
||||
|
||||
if not df.empty:
|
||||
df = _get_relation_autor(df, relation_tab='r_rsiteconnect_auteur', schema=self.schema,
|
||||
id_df='id', id_relation='id_siteconnect', id_rela_auth='id_auteur' )
|
||||
df = pd.merge(df,dic, how='left', left_on='id_param_connect', right_on='id', suffixes=(None,'_y')) \
|
||||
.drop(['id_y','id_param_connect'],1) \
|
||||
.rename(columns={'description_y':'desc_param', 'nom':'connexion'}) \
|
||||
.sort_values('id_site')
|
||||
|
||||
return df
|
||||
|
||||
|
||||
def get_sub(self, id_site=None, nom_site=None, last_update=True, geom=False,statut='actif'):
|
||||
|
||||
table = 'r_site_sub'
|
||||
df = self._get_relation_tab(schema=self.schema,tab=table,id_site=id_site,nom_site=nom_site,last_update=last_update,geom=geom,
|
||||
params_col={'id_type_milieu':self.id_milieux.astype(str)}, statut=statut)
|
||||
dic = self._get_param(type_table='type_param_sub', param_table='param_sub', type_court=False)
|
||||
d1 = dic[dic.type == 'Submersion étendue']
|
||||
d2 = dic[dic.type == 'Submersion fréquente']
|
||||
|
||||
if not df.empty:
|
||||
df = _get_relation_autor(df, relation_tab='r_rsitesub_auteur', schema=self.schema,
|
||||
id_df='id', id_relation='id_sitesub', id_rela_auth='id_auteur' )
|
||||
|
||||
df = pd.merge(df,d1, how='left', left_on='id_etendsub', right_on='id', suffixes=(None,'_y')) \
|
||||
.drop(['id_y','id_etendsub', 'type'],1) \
|
||||
.rename(columns={'description':'desc_param_etend', 'nom':'Submersion étendue'})
|
||||
|
||||
df = pd.merge(df,d2, how='left', left_on='id_freqsub', right_on='id', suffixes=(None,'_y')) \
|
||||
.drop(['id_y','id_freqsub', 'type'],1) \
|
||||
.rename(columns={'description':'desc_param_freq', 'nom':'Submersion fréquente'}) \
|
||||
.sort_values('id_site')
|
||||
|
||||
df.rename(columns={'id_origsub': 'origine_sub'}, inplace=True)
|
||||
|
||||
if df['desc_param_etend'].isnull().sum() == df.shape[0] : del df['desc_param_etend']
|
||||
if df['desc_param_freq'].isnull().sum() == df.shape[0] : del df['desc_param_freq']
|
||||
|
||||
return df
|
||||
|
||||
|
||||
def get_usageprocess(self, id_site=None, nom_site=None, last_update=True, geom=False,statut='actif'):
|
||||
|
||||
table = 'r_site_usageprocess'
|
||||
df = self._get_relation_tab(schema=self.schema,tab=table,id_site=id_site,nom_site=nom_site,last_update=last_update,geom=geom,
|
||||
params_col={'id_type_milieu':self.id_milieux.astype(str)}, statut=statut)
|
||||
dic1 = self._get_param(param_table='param_activ_hum')
|
||||
dic2 = self._get_param(param_table='param_position')
|
||||
dic3 = self._get_param(param_table='param_impact')
|
||||
|
||||
if not df.empty:
|
||||
df = _get_relation_autor(df, relation_tab='r_rsiteusage_auteur', schema=self.schema,
|
||||
id_df='id', id_relation='id_siteusage', id_rela_auth='id_auteur' )
|
||||
|
||||
df = pd.merge(df,dic1, how='left', left_on='id_activ_hum', right_on='id', suffixes=(None,'_y')) \
|
||||
.drop(['id_y','id_activ_hum'],1) \
|
||||
.rename(columns={'description':'desc_param_usag', 'nom':'activite_hum'})
|
||||
df = pd.merge(df,dic2, how='left', left_on='id_position', right_on='id', suffixes=(None,'_y')) \
|
||||
.drop(['id_y','id_position'],1) \
|
||||
.rename(columns={'description':'desc_param_pos', 'nom':'position'}) \
|
||||
.sort_values('id_site')
|
||||
df = pd.merge(df,dic3, how='left', left_on='id_impact', right_on='id', suffixes=(None,'_y')) \
|
||||
.drop(['id_y','id_impact'],1) \
|
||||
.rename(columns={'description':'desc_param_imp', 'nom':'impact'}) \
|
||||
.sort_values('id_site')
|
||||
|
||||
return df
|
||||
|
||||
|
||||
def _get_r_toponymie(self, ids=None):
|
||||
table = 'r_toponymie'
|
||||
df = _get_table(self.con, self.schema, table=table, ids=ids)
|
||||
dic1 = self._get_param(param_table='liste_table_topohydro')
|
||||
if not df.empty:
|
||||
df = pd.merge(df,dic1, how='left', left_on='id_orig', right_on='id', suffixes=(None,'_y')) \
|
||||
.drop(['id_y','id_orig'],1)
|
||||
n_tab = df.nom_table.unique()
|
||||
for tab in n_tab:
|
||||
iids = df.loc[df.nom_table == tab, 'id_topo'].to_list()
|
||||
if tab == 'orig_hydro': dic = _get_table(self.con, self.schema, table='orig_hydro', ids=iids)
|
||||
if tab == 'troncon_hydro': dic = ref_hydro.get_troncon(cols=['id','nom'], ids=iids)
|
||||
df.loc[df.nom_table == tab, 'id_topo'] = df.loc[df.nom_table == tab, 'id_topo'].replace(dic.id.to_list(),dic.nom.to_list())
|
||||
if tab == 'troncon_hydro': df = pd.merge(df, dic, how='left', left_on='id_topo', right_on='nom', suffixes=(None,'_y')) \
|
||||
.drop(columns=['id_y', 'nom'])
|
||||
df.rename(columns={'id_topo':'toponymie'})
|
||||
|
||||
return df
|
||||
|
||||
|
||||
def get_regHydro(self, id_site=None, nom_site=None, last_update=True, geom=False,statut='actif'):
|
||||
|
||||
table = 'r_site_reghydro'
|
||||
df = self._get_relation_tab(schema=self.schema,tab=table,id_site=id_site,nom_site=nom_site,last_update=last_update,geom=geom,
|
||||
params_col={'id_type_milieu':self.id_milieux.astype(str)}, statut=statut)
|
||||
dic1 = self._get_param(param_table='param_reg_hydro')
|
||||
dic2 = self._get_param(param_table='param_permanence')
|
||||
|
||||
if not df.empty:
|
||||
df = _get_relation_autor(df, relation_tab='r_rsitehydro_auteur', schema=self.schema,
|
||||
id_df='id', id_relation='id_sitehydro', id_rela_auth='id_auteur' )
|
||||
|
||||
# dic3 = self._get_r_toponymie(ids=df.rmq_toponymie.unique().tolist())
|
||||
df.in_out = df.in_out.replace([True,False],['entree','sortie'])
|
||||
df = pd.merge(df,dic1, how='left', left_on='id_reg_hydro', right_on='id', suffixes=(None,'_y')) \
|
||||
.drop(['id_y','id_reg_hydro'],1) \
|
||||
.rename(columns={'description':'desc_param_regHydri', 'nom':'regime_hydri'})
|
||||
|
||||
if df.id_permanence.isna().all() :
|
||||
df.rename(columns={'id_permanence':'permanence'}, inplace=True)
|
||||
df['desc_param_perm'] = None
|
||||
else:
|
||||
df = pd.merge(df,dic2, how='left', left_on='id_permanence', right_on='id', suffixes=(None,'_y')) \
|
||||
.drop(['id_y','id_permanence'],1) \
|
||||
.rename(columns={'description':'desc_param_perm', 'nom':'permanence'})
|
||||
|
||||
# df = pd.merge(df,dic3, left_on='rmq_toponymie', right_on='id', suffixes=(None,'_y')) \
|
||||
# .drop(['id_y','rmq_toponymie'],1) \
|
||||
# .rename(columns={'description':'desc_topo'}) \
|
||||
# .sort_values('id_site')
|
||||
|
||||
return df
|
||||
|
||||
|
||||
def get_habitat(self, id_site=None, nom_site=None, last_update=True, geom=False,statut='actif'):
|
||||
|
||||
table = 'r_site_habitat'
|
||||
df = self._get_relation_tab(schema=self.schema,tab=table,id_site=id_site,nom_site=nom_site,last_update=last_update,geom=geom,
|
||||
params_col={'id_type_milieu':self.id_milieux.astype(str)}, statut=statut)
|
||||
|
||||
if not df.empty:
|
||||
df = _get_relation_autor(df, relation_tab='r_rsitehab_auteur', schema=self.schema,
|
||||
id_df='id', id_relation='id_sitehab', id_rela_auth='id_auteur' )
|
||||
|
||||
ids = df[~df.id_cb.isna()].id_cb.unique().tolist()
|
||||
dic = ref_hab().get_CB(ids=ids,cols=['id','lb_hab_fr'])
|
||||
df = pd.merge(df,dic, how='left', left_on='id_cb', right_on='id', suffixes=(None,'_y')) \
|
||||
.drop(['id_y'], 1) \
|
||||
.rename(columns={'id_cb':'code_cb'}) \
|
||||
.sort_values('id_site')
|
||||
|
||||
return df
|
||||
|
||||
|
||||
def get_sitesInfos(self, id_site=None, nom_site=None, columns=None, with_nameOrga=False, statut='actif'):
|
||||
from .sites.sites import get_sitesInfos
|
||||
|
||||
df = get_sitesInfos(ids=id_site, nom=nom_site, columns=columns, with_nameOrga=with_nameOrga,
|
||||
params_col={'id_type_milieu':self.id_milieux.astype(str)}, statut=statut)
|
||||
|
||||
return df
|
||||
|
||||
|
||||
def get_sitesGeom(self, id_site=None, nom_site=None, columns=None, last_update=True, with_nameOrga=False,
|
||||
params_col={}, statut='actif'):
|
||||
from .sites.sites import get_sitesGeom
|
||||
|
||||
if params_col:
|
||||
params_col = {**params_col, 'id_type_milieu':self.id_milieux.astype(str) }
|
||||
|
||||
df = get_sitesGeom(id_site=id_site, nom_site=nom_site, columns=columns,
|
||||
with_nameOrga=with_nameOrga,last_update=last_update,
|
||||
params_col=params_col , statut=statut)
|
||||
|
||||
drop_cols = ['link_pdf', 'rmq_fct_majeur',
|
||||
'rmq_interet_patri', 'rmq_bilan_menace', 'rmq_orient_act',
|
||||
'rmq_usage_process']
|
||||
cols = df.columns
|
||||
c = cols[cols.isin(drop_cols)]
|
||||
if not c.empty:
|
||||
df.drop(columns=c, inplace=True)
|
||||
|
||||
return df
|
||||
|
||||
|
||||
def get_evaluation(self, id_site=None, nom_site=None, columns=None, last_update=True, with_nameOrga=False,
|
||||
params_col={}, statut='actif'):
|
||||
from .sites.sites import get_sitesGeom
|
||||
|
||||
if params_col:
|
||||
params_col = {**params_col, 'id_type_milieu':self.id_milieux.astype(str) }
|
||||
|
||||
df = get_sitesGeom(id_site=id_site, nom_site=nom_site, columns=columns,
|
||||
with_nameOrga=with_nameOrga,last_update=last_update,
|
||||
params_col=params_col, statut=statut)
|
||||
|
||||
df.drop(columns=['geom'], inplace=True)
|
||||
|
||||
return df
|
||||
|
||||
|
||||
def get_bilan(self, code_site=None, nom_site=None, statut='actif',last_update=True):
|
||||
'''
|
||||
:code_site: list,str. Code du site de la zh.
|
||||
:nom_site: list,str. Nom du site de la zh.
|
||||
'''
|
||||
info = self.get_sitesInfos(id_site=code_site, nom_site=nom_site,statut=statut)
|
||||
CB = self.get_habitat(id_site=code_site, nom_site=nom_site,last_update=last_update,statut=statut)
|
||||
delim = self.get_delim(id_site=code_site, nom_site=nom_site,last_update=last_update,statut=statut)
|
||||
desc = self.get_usageprocess(id_site=code_site, nom_site=nom_site,last_update=last_update,statut=statut)
|
||||
rghyd = self.get_regHydro(id_site=code_site, nom_site=nom_site,last_update=last_update,statut=statut)
|
||||
subm = self.get_sub(id_site=code_site, nom_site=nom_site,last_update=last_update,statut=statut)
|
||||
conn = self.get_connex(id_site=code_site, nom_site=nom_site,last_update=last_update,statut=statut)
|
||||
fct = self.get_fct(id_site=code_site, nom_site=nom_site,last_update=last_update,statut=statut)
|
||||
evall = self.get_evaluation(id_site=code_site, nom_site=nom_site,last_update=last_update,statut=statut)
|
||||
|
||||
print('subm : {}'.format(subm))
|
||||
print('conn : {}'.format(conn))
|
||||
if subm.empty:
|
||||
sub_con = conn.rename(columns={
|
||||
'description': 'desc_connex',
|
||||
'valid': 'valid_cnx',
|
||||
})
|
||||
elif conn.empty:
|
||||
sub_con = subm.rename(columns={'valid': 'valid_sub',})
|
||||
else:
|
||||
sub_con = pd.merge(subm, conn, how='outer', on=['id', 'id_site', 'date_geom','auteur_geom']) \
|
||||
.rename(columns={
|
||||
'description': 'desc_connex',
|
||||
'valid_x': 'valid_sub',
|
||||
'valid_y': 'valid_cnx',
|
||||
})
|
||||
fctmt = {
|
||||
'entree_eau': rghyd[rghyd.in_out == 'entree'].drop(columns=['in_out']),
|
||||
'sortie_eau': rghyd[rghyd.in_out == 'sortie'].drop(columns=['in_out']),
|
||||
'sub_connex': sub_con,
|
||||
}
|
||||
lst_df = {
|
||||
'infos':info,
|
||||
'corine_biotope': CB,
|
||||
'delimitation': delim,
|
||||
'description': desc,
|
||||
'fonctionnement': fctmt,
|
||||
'fonction': fct,
|
||||
'evaluation': evall}
|
||||
for key in lst_df:
|
||||
if isinstance(lst_df[key], pd.DataFrame): lst_df[key].name = key
|
||||
if isinstance(lst_df[key], dict):
|
||||
for d in lst_df[key]:
|
||||
lst_df[key][d].name = d
|
||||
lst_df[key]['title'] = key
|
||||
return lst_df
|
||||
|
||||
#####################################
|
||||
### schema ref_habitats ###
|
||||
#####################################
|
||||
class ref_hab:
|
||||
def __init__(self):
|
||||
from .params import con
|
||||
self.schema = 'ref_habitats'
|
||||
self.con = con
|
||||
|
||||
def get_CB(self, ids=None, cols=None, params_col={}):
|
||||
table = 'corine_biotope'
|
||||
df = _get_table(self.con, self.schema, table=table, ids=ids, cols=cols, params_col=params_col)
|
||||
return df
|
||||
|
||||
|
||||
#####################################
|
||||
### schema ref_hydro ###
|
||||
#####################################
|
||||
class ref_hydro:
|
||||
def __init__(self):
|
||||
from .params import con
|
||||
self.schema = 'ref_hydro'
|
||||
self.con = con
|
||||
|
||||
def get_troncon(self, ids=None, cols=None, params_col={}):
|
||||
|
||||
table = 'troncon_hydro'
|
||||
df = _get_table(self.con, self.schema, table=table, ids=ids, cols=cols, params_col=params_col)
|
||||
# df = _set_geom(df)
|
||||
|
||||
return df
|
||||
|
||||
def get_coursEau(self, ids=None, cols=None, params_col={}):
|
||||
|
||||
table = 'cours_eau'
|
||||
df = _get_table(self.con, self.schema, table=table, ids=ids, cols=cols, params_col=params_col)
|
||||
# df = _set_geom(df)
|
||||
|
||||
return df
|
||||
|
||||
def get_masseEau(self, ids=None, cols=None, params_col={}):
|
||||
|
||||
table = 'masse_eau'
|
||||
df = _get_table(self.con, self.schema, table=table, ids=ids, cols=cols, params_col=params_col)
|
||||
# df = _set_geom(df)
|
||||
|
||||
return df
|
||||
|
||||
def get_planEau(self, ids=None, cols=None, params_col={}):
|
||||
|
||||
table = 'plan_eau'
|
||||
df = _get_table(self.con, self.schema, table=table, ids=ids, cols=cols, params_col=params_col)
|
||||
# df = _set_geom(df)
|
||||
|
||||
return df
|
||||
|
||||
def get_ssbv(self, ids=None, cols=None, params_col={}):
|
||||
|
||||
table = 'ssbv'
|
||||
df = _get_table(self.con, self.schema, table=table, ids=ids, cols=cols, params_col=params_col)
|
||||
# df = _set_geom(df)
|
||||
|
||||
return df
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
#####################################
|
||||
### Update ###
|
||||
#####################################
|
||||
def update_to_sql(df, con, table_name, schema_name, key_name):
|
||||
a = []
|
||||
b = []
|
||||
table = table_name
|
||||
schema = schema_name
|
||||
primary_key = key_name
|
||||
if isinstance(primary_key, str): primary_key = [primary_key]
|
||||
for col in df.columns:
|
||||
if col in primary_key:
|
||||
b.append("t.{col}=f.{col}".format(col=col))
|
||||
else:
|
||||
a.append("{col}=t.{col}".format(col=col))
|
||||
df.to_sql(
|
||||
name = 'temp_table',
|
||||
con = con,
|
||||
schema = schema,
|
||||
if_exists = 'replace',
|
||||
index = False,
|
||||
method = 'multi'
|
||||
)
|
||||
update_stmt_1 = "UPDATE {sch}.{final_table} f".format(sch=schema,final_table=table)
|
||||
update_stmt_2 = " FROM {sch}.temp_table t".format(sch=schema)
|
||||
update_stmt_6 = " WHERE %s"%' AND '.join(b)
|
||||
update_stmt_3 = " SET "
|
||||
update_stmt_4 = ", ".join(a)
|
||||
update_stmt_5 = update_stmt_1 + update_stmt_3 + update_stmt_4 + update_stmt_2 + update_stmt_6 + ";"
|
||||
drop_stmt = "DROP TABLE {sch}.temp_table ;".format(sch=schema)
|
||||
with con.begin() as cnx:
|
||||
cnx.execute(update_stmt_5)
|
||||
cnx.execute(drop_stmt)
|
||||
return print('END update')
|
||||
|
||||
|
||||
# [SQL: INSERT INTO zones_humides.r_site_reghydro (id, id_geom_site, id_reg_hydro, id_permanence, rmq_toponymie, in_out)
|
||||
# VALUES (%(id)s, %(id_geom_site)s, %(id_reg_hydro)s, %(id_permanence)s, %(rmq_toponymie)s, %(in_out)s)]
|
||||
# [parameters: ({'id': 0, 'id_geom_site': 5, 'id_reg_hydro': '0', 'id_permanence': '1', 'rmq_toponymie': '', 'in_out': True},
|
||||
# {'id': 1, 'id_geom_site': 5, 'id_reg_hydro': '1', 'id_permanence': '1', 'rmq_toponymie': '', 'in_out': False},
|
||||
# {'id': 2, 'id_geom_site': 6, 'id_reg_hydro': '0', 'id_permanence': '1', 'rmq_toponymie': '', 'in_out': True},
|
||||
# {'id': 3, 'id_geom_site': 6, 'id_reg_hydro': '1', 'id_permanence': '1', 'rmq_toponymie': '', 'in_out': False},
|
||||
# {'id': 4, 'id_geom_site': 7, 'id_reg_hydro': '2', 'id_permanence': '2', 'rmq_toponymie': 'plusieurs petites sources dans versant', 'in_out': True},
|
||||
# {'id': 5, 'id_geom_site': 7, 'id_reg_hydro': '1', 'id_permanence': '2', 'rmq_toponymie': 'longe la route D209a', 'in_out': False},
|
||||
# {'id': 6, 'id_geom_site': 8, 'id_reg_hydro': '0', 'id_permanence': '2', 'rmq_toponymie': '', 'in_out': True},
|
||||
# {'id': 7, 'id_geom_site': 8, 'id_reg_hydro': '3', 'id_permanence': None, 'rmq_toponymie': '', 'in_out': False}
|
||||
# ... displaying 10 of 5779 total bound parameter sets ...
|
||||
# {'id': 5777, 'id_geom_site': 1951, 'id_reg_hydro': '0', 'id_permanence': None, 'rmq_toponymie': '', 'in_out': True},
|
||||
# {'id': 5778, 'id_geom_site': 1951, 'id_reg_hydro': '3', 'id_permanence': None, 'rmq_toponymie': '', 'in_out': False})]
|
||||
Loading…
x
Reference in New Issue
Block a user