pycen/vrac/Modif_caract_hab.py
2021-10-08 15:14:47 +02:00

73 lines
2.4 KiB
Python

#!/usr/bin/env python3
# -*- coding: UTF-8 -*-
import pandas as pd
import pyzh
zh = pyzh.zh()
con = pyzh.con
sch = 'zones_humides'
lst_site_old = ['38RD0146','38RD0147']
lst_site_new = ['38RD0164','38RD0165']
df = zh.get_habitat(id_site=lst_site_old)
geomsite = zh.get_sitesGeom(id_site=lst_site_new)
aut = pyzh.pers.get_auteur()
tab = 'r_site_habitat'
rtab_aut = 'r_rsitehab_auteur'
id_rsiteaut = 'id_sitehab'
date_champ = 'date_habit'
nom_champ = 'code_cb'
id_champ = 'id_cb'
# delim = zh._get_param(param_table='param_fct_eco_socio_patri',type_table='type_param_fct')
df.drop(
columns=['id','valid', 'date_geom', 'auteur_geom', 'desc_param','type','lb_hab_fr'],
inplace=True,
errors='ignore')
for i, s in enumerate(lst_site_new):
df.loc[df.id_site==lst_site_old[i], 'id_site'] = s
df.loc[df.id_site==s, ['id_geom_site']] = geomsite.loc[geomsite.id_site==s,'id'].values[0].astype(str)
df['id_geom_site'] = df.id_geom_site.astype(int)
df[id_champ] = df[nom_champ]
# df[id_champ] = df[id_champ].replace(delim.nom.tolist(),delim.id.tolist())
df['date'] = df[date_champ]
df.drop(columns=['id_site',nom_champ,date_champ], inplace=True)
lst_idgeom = df.id_geom_site.unique().astype(str)
# check si data in bdd
sql = 'select exists(select * from {sch}.{tab} where id_geom_site in ({lst_id}));'.format(
sch=sch, tab=tab, lst_id=','.join(lst_idgeom)
)
res = pd.read_sql(sql,con)
if res.exists[0]:
# delete if exist
sql = 'delete from {sch}.{tab} where id_geom_site in ({lst_id});'.format(
sch=sch, tab=tab, lst_id=','.join(lst_idgeom)
)
pd.read_sql(sql,con)
# insert new line in bdd
col = df.columns[~df.columns.str.contains('auteur')]
colaut = df.columns[df.columns.str.contains('auteur')]
df[col].to_sql(
tab, con, schema=sch,
if_exists='append',index=False,method='multi'
)
# Récupération des nouveaux ids insérés
sql = 'select * from {sch}.{tab} where id_geom_site in ({lst_id});'.format(
sch=sch, tab=tab, lst_id=','.join(lst_idgeom)
)
res = pd.read_sql(sql,con)
df = df.merge(res, how='left', on=[*col])
ins_aut = df[['id',*colaut]].copy()
aut['nom_prenom'] = aut.nom + ' ' + aut.prenom
aut.loc[aut.nom_prenom.isna(), 'nom_prenom'] = aut.loc[aut.nom_prenom.isna(), 'nom']
ins_aut[colaut] = ins_aut[colaut].replace(aut.nom_prenom.tolist(), aut.id.tolist())
ins_aut.columns = [id_rsiteaut, 'id_auteur']
ins_aut.to_sql(
rtab_aut, con, schema=sch,
if_exists='append',index=False,method='multi')