83 lines
3.0 KiB
Python
83 lines
3.0 KiB
Python
#!/usr/bin/env python3
|
|
# -*- coding: UTF-8 -*-
|
|
import pandas as pd
|
|
import pyzh
|
|
zh = pyzh.zh()
|
|
|
|
con = pyzh.con
|
|
sch = 'zones_humides'
|
|
lst_site_old = ['38RD0146','38RD0147']
|
|
lst_site_new = ['38RD0164','38RD0165']
|
|
df = zh.get_usageprocess(id_site=lst_site_old)
|
|
geomsite = zh.get_sitesGeom(id_site=lst_site_new)
|
|
aut = pyzh.pers.get_auteur()
|
|
|
|
tab = 'r_site_usageprocess'
|
|
rtab_aut = 'r_rsiteusage_auteur'
|
|
id_rsiteaut = 'id_siteusage'
|
|
date_champ = 'date_usage'
|
|
nom_champ1 = 'activite_hum'
|
|
nom_champ2 = 'impact'
|
|
nom_champ3 = 'position'
|
|
id_champ1 = 'id_activ_hum'
|
|
id_champ2 = 'id_impact'
|
|
id_champ3 = 'id_position'
|
|
delim1 = zh._get_param(param_table='param_activ_hum', type_court=False)
|
|
delim2 = zh._get_param(param_table='param_impact', type_court=False)
|
|
delim3 = zh._get_param(param_table='param_position', type_court=False)
|
|
|
|
col_desc = df.columns[df.columns.str.contains('desc')]
|
|
df.drop(
|
|
columns=['id','valid', 'date_geom', 'auteur_geom', *col_desc,'description','type','lb_hab_fr'],
|
|
inplace=True,
|
|
errors='ignore')
|
|
|
|
for i, s in enumerate(lst_site_new):
|
|
df.loc[df.id_site==lst_site_old[i], 'id_site'] = s
|
|
df.loc[df.id_site==s, ['id_geom_site']] = geomsite.loc[geomsite.id_site==s,'id'].values[0].astype(str)
|
|
|
|
df['id_geom_site'] = df.id_geom_site.astype(int)
|
|
df[id_champ1] = df[nom_champ1]
|
|
df[id_champ2] = df[nom_champ2]
|
|
df[id_champ3] = df[nom_champ3]
|
|
df[id_champ1] = df[id_champ1].replace(delim1.nom.tolist(),delim1.id.tolist())
|
|
df[id_champ2] = df[id_champ2].replace(delim2.nom.tolist(),delim2.id.tolist())
|
|
df[id_champ3] = df[id_champ3].replace(delim3.nom.tolist(),delim3.id.tolist())
|
|
df['date'] = df[date_champ]
|
|
|
|
df.drop(columns=['id_site',nom_champ1,nom_champ2,nom_champ3,date_champ], inplace=True)
|
|
lst_idgeom = df.id_geom_site.unique().astype(str)
|
|
|
|
# check si data in bdd
|
|
sql = 'select exists(select * from {sch}.{tab} where id_geom_site in ({lst_id}));'.format(
|
|
sch=sch, tab=tab, lst_id=','.join(lst_idgeom)
|
|
)
|
|
res = pd.read_sql(sql,con)
|
|
if res.exists[0]:
|
|
# delete if exist
|
|
sql = 'delete from {sch}.{tab} where id_geom_site in ({lst_id});'.format(
|
|
sch=sch, tab=tab, lst_id=','.join(lst_idgeom)
|
|
)
|
|
pd.read_sql(sql,con)
|
|
# insert new line in bdd
|
|
col = df.columns[~df.columns.str.contains('auteur')]
|
|
colaut = df.columns[df.columns.str.contains('auteur')]
|
|
df[col].to_sql(
|
|
tab, con, schema=sch,
|
|
if_exists='append',index=False,method='multi'
|
|
)
|
|
# Récupération des nouveaux ids insérés
|
|
sql = 'select * from {sch}.{tab} where id_geom_site in ({lst_id});'.format(
|
|
sch=sch, tab=tab, lst_id=','.join(lst_idgeom)
|
|
)
|
|
res = pd.read_sql(sql,con)
|
|
df = df.merge(res, how='left', on=[*col])
|
|
|
|
ins_aut = df[['id',*colaut]].copy()
|
|
aut['nom_prenom'] = aut.nom + ' ' + aut.prenom
|
|
aut.loc[aut.nom_prenom.isna(), 'nom_prenom'] = aut.loc[aut.nom_prenom.isna(), 'nom']
|
|
ins_aut[colaut] = ins_aut[colaut].replace(aut.nom_prenom.tolist(), aut.id.tolist())
|
|
ins_aut.columns = [id_rsiteaut, 'id_auteur']
|
|
ins_aut.to_sql(
|
|
rtab_aut, con, schema=sch,
|
|
if_exists='append',index=False,method='multi') |